Umberto Galderisi

Professor of Molecular Biology

Name Umberto
Surname Galderisi
Institution Università degli Studi della Campania Luigi Vanvitelli
Telephone +39 081 566 75 85
Address Dept. of Experimental Medicine, Via Luigi De Crecchio 7 – 80138 Napoli, Italy
Umberto Galderisi


  • Injury to rat carotid arteries causes time-dependent changes in gene expression in contralateral uninjured arteries.

    Publication Date: 01/01/2009 on Clinical science (London, England : 1979)
    by Forte A, Finicelli M, De Luca P, Nordström I, Onorati F, Quarto C, Santè P, Renzulli A, Galderisi U, Berrino L, De Feo M, Hellstrand P, Rossi F, Cotrufo M, Cascino A, Cipollaro M
    DOI: 10.1042/CS20080080

    Vascular surgery aimed at stenosis removal induces local reactions often leading to restenosis. Although extensive analysis has been focused on pathways activated in injured arteries, little attention has been devoted to associated systemic vascular reactions. The aim of the present study was to analyse changes occurring in contralateral uninjured rat carotid arteries in the acute phase following unilateral injury. WKY (Wistar-Kyoto) rats were subjected to unilateral carotid arteriotomy. Contralateral uninjured carotid arteries were harvested from 4 h to 7 days after injury. Carotid arteries were also harvested from sham-operated rats and uninjured rats. Carotid morphology and morphometry were examined. Affymetrix microarrays were used for differential analysis of gene expression. A subset of data was validated by real-time RT-PCR (reverse transcription-PCR) and verified at the protein level by Western blotting. A total of 1011 genes were differentially regulated in contralateral uninjured carotid arteries from 4 h to 7 days after arteriotomy (P<0.0001; fold change, >or=2) and were classified into 19 gene ontology functional categories. To a lesser extent, mRNA variations also occurred in carotid arteries of sham-operated rats. Among the changes, up-regulation of members of the RAS (renin-angiotensin system) was detected, with possible implications for vasocompensative mechanisms induced by arteriotomy. In particular, a selective increase in the 69 kDa isoform of the N-domain of ACE (angiotensin-converting enzyme), and not the classical somatic 195 kDa isoform, was observed in contralateral uninjured carotid arteries, suggesting that this 69 kDa isoenzyme could influence local AngII (angiotensin II) production. In conclusion, systemic reactions to injury occur in the vasculature, with potential clinical relevance, and suggest that caution is needed in the choice of controls during experimental design in vivo.

  • Mesenchymal stem cells effectively reduce surgically induced stenosis in rat carotids.

    Publication Date: 01/12/2008 on Journal of cellular physiology
    by Forte A, Finicelli M, Mattia M, Berrino L, Rossi F, De Feo M, Cotrufo M, Cipollaro M, Cascino A, Galderisi U
    DOI: 10.1002/jcp.21559

    Restenosis following vascular injury remains a pressing clinical problem. Mesenchymal stem cells (MSCs) promise as a main actor of cell-based therapeutic strategies. The possible therapeutic role of MSCs in vascular stenosis in vivo has been poorly investigated so far. We tested the effectiveness of allogenic bone marrow-derived MSCs in reduction of stenosis in a model of rat carotid arteriotomy. MSCs were expanded in vitro retaining their proliferative and differentiation potentiality. MSCs were able to differentiate into adipocyte and osteocyte mesenchymal lineage cells, retained specific antigens CD73, CD90, and CD105, expressed smooth muscle alpha-actin, were mainly in proliferative phase of cell cycle and showed limited senescence. WKY rats were submitted to carotid arteriotomy and to venous administration with 5 x 10(6) MSCs. MSCs in vivo homed in injured carotids since 3 days after arteriotomy but not in contralateral uninjured carotids. Lumen area in MSC-treated carotids was 36% greater than in control arteries (P = 0.016) and inward remodeling was limited in MSC-treated carotids (P = 0.030) 30 days after arteriotomy. MSC treatment affected the expression level of inflammation-related genes, inducing a decrease of IL-1beta and Mcp-1 and an increase of TGF-beta in injured carotids at 3 and 7 days after arteriotomy (P < 0.05). Taken together, these results indicate that allogenic MSC administration limits stenosis in injured rat carotids and plays a local immunomodulatory action.

  • Expression profiles in surgically-induced carotid stenosis: a combined transcriptomic and proteomic investigation.

    Publication Date: 01/10/2008 on Journal of cellular and molecular medicine
    by Forte A, Finicelli M, De Luca P, Quarto C, Onorati F, Santè P, Renzulli A, Galderisi U, Berrino L, De Feo M, Rossi F, Cotrufo M, Cascino A, Cipollaro M
    DOI: 10.1111/j.1582-4934.2008.00212.x

    Vascular injury aimed at stenosis removal induces local reactions often leading to restenosis. The aim of this study was a concerted transcriptomic-proteomics analysis of molecular variations in a model of rat carotid arteriotomy, to dissect the molecular pathways triggered by vascular surgical injury and to identify new potential anti-restenosis targets. RNA and proteins extracted from inbred Wistar Kyoro (WKY) rat carotids harvested 4 hrs, 48 hrs and 7 days after arteriotomy were analysed by Affymetrix rat microarrays and by bidimensional electrophoresis followed by liquid chromatography and tandem mass spectrometry, using as reference the RNA and the proteins extracted from uninjured rat carotids. Results were classified according to their biological function, and the most significant Kyoro Encyclopedia of Genes and Genomes (KEGG) pathways were identified. A total of 1163 mRNAs were differentially regulated in arteriotomy-injured carotids 4 hrs, 48 hrs and 7 days after injury (P < 0.0001, fold-change > or =2), while 48 spots exhibited significant changes after carotid arteriotomy (P < 0.05, fold-change > or =2). Among them, 16 spots were successfully identified and resulted to correspond to a set of 19 proteins. mRNAs were mainly involved in signal transduction, oxidative stress/inflammation and remodelling, including many new potential targets for limitation of surgically induced (re)stenosis (e.g. Arginase I, Kruppel like factors). Proteome analysis confirmed and extended the microrarray data, revealing time-dependent post-translational modifications of Hsp27, haptoglobin and contrapsin-like protease inhibitor 6, and the differential expression of proteins mainly involved in contractility. Transcriptomic and proteomic methods revealed functional categories with different preferences, related to the experimental sensitivity and to mechanisms of regulation. The comparative analysis revealed correlation between transcriptional and translational expression for 47% of identified proteins. Exceptions from this correlation confirm the complementarities of these approaches.

  • A case report: bone marrow mesenchymal stem cells from a Rett syndrome patient are prone to senescence and show a lower degree of apoptosis.

    Publication Date: 15/04/2008 on Journal of cellular biochemistry
    by Squillaro T, Hayek G, Farina E, Cipollaro M, Renieri A, Galderisi U
    DOI: 10.1002/jcb.21582

    Rett syndrome (RTT) is one of the most common genetic diseases responsible for a progressive disabling neurodevelopmental disorder. Mutations in the MeCP2 gene were identified in the great majority of RTT patients. MeCP2 protein binds to methylated DNA and produces changes in chromatin structure. This is a key event in regulation of gene expression. It has been suggested that MeCP2 might be important for neuronal development. Moreover, the frequent occurrence of osteoporosis and scoliosis in RTT patients suggests impaired bone formation and/or remodeling. Mesenchymal stem cells (MSCs) can differentiate as mesodermal cells such as bone, cartilage cells, and adipocytes. MSCs have been shown to possess great somatic plasticity; in fact, they can differentiate as neurons and astrocytes. We studied RTT patients' MSCs because they are progenitors of osteocytes, and it has been suggested that RTT patients' osteogenesis could be impaired. Moreover, MSCs might represent a useful model for the study of neurogenesis. MSCs from RTT patient showed precocious signs of senescence in a comparison with the MSCs of healthy-patient control groups. This was in agreement with the reduced gene-expression in the control of stem cell self-renewal and upregulation of lineage specific genes, such as those involved in osteogenesis and neural development. Control groups enabled us to observe a lower degree of apoptosis in RTT patient cells. This means that aberrant stem/progenitor cells, instead of being eliminated, can survive and become senescent. Our research provides a new insight into RTT syndrome. Senescence phenomena could be involved in triggering RTT syndrome-associated diseases.

  • Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells.

    Publication Date: 15/08/2007 on Journal of cell science
    by Napolitano MA, Cipollaro M, Cascino A, Melone MA, Giordano A, Galderisi U
    DOI: 10.1242/jcs.004002

    Self-renewal, proliferation and differentiation properties of stem cells are controlled by key transcription factors. However, their activity is modulated by chromatin remodeling factors that operate at the highest hierarchical level. Studies on these factors can be especially important to dissect molecular pathways governing the biology of stem cells. SWI/SNF complexes are adenosine triphosphate (ATP)-dependent chromatin remodeling enzymes that have been shown to be required for cell cycle control, apoptosis and cell differentiation in several biological systems. The aim of our research was to investigate the role of these complexes in the biology of mesenchymal stem cells (MSCs). To this end, in MSCs we caused a forced expression of the ATPase subunit of SWI/SNF (Brg1 - also known as Smarca4) by adenoviral transduction. Forced Brg1 expression induced a significant cell cycle arrest of MSCs in culture. This was associated with a huge increase in apoptosis that reached a peak 3 days after transduction. In addition, we observed signs of senescence in cells having ectopic Brg1 expression. At the molecular level these phenomena were associated with activation of Rb- and p53-related pathways. Inhibition of either p53 or Rb with E1A mutated proteins allowed us to hypothesize that both Rb and p53 are indispensable for Brg1-induced senescence, whereas only p53 seems to play a role in triggering programmed cell death. We also looked at the effects of forced Brg1 expression on canonical MSC differentiation in adipocytes, chondrocytes and osteocytes. Brg1 did not induce cell differentiation per se; however, this protein could contribute, at least in part, to the adipocyte differentiation process. In conclusion, our results suggest that whereas some ATP-dependent chromatin remodeling factors, such as ISWI complexes, promote stem cell self-renewal and conservation of an uncommitted state, others cause an escape from 'stemness' and induction of differentiation along with senescence and cell death phenomena.

  • Pathophysiology of stem cells in restenosis.

    Publication Date: 01/05/2007 on Histology and histopathology
    by Forte A, Cipollaro M, Cascino A, Galderisi U
    DOI: 10.14670/HH-22.547

    Recent evidence has shown that vascular function depends not only on cells within the vessels, but is also significantly modulated by circulating cells derived from the bone marrow. A number of studies indicate that an early reendothelialization by circulating endothelial precursors after vascular injury prevents excessive cell proliferation and restenosis. Conversely, other studies concluded that the homing of other cell fractions, consisting mainly of smooth muscle precursors, cause pathological remodelling. Different cell types have been identified and characterized so far as circulating precursors able to participate in vascular repair by homing and differentiating towards endothelial cells or smooth muscle cells. Among these, endothelial precursor cells, smooth muscle progenitor cells, mesenchymal stem cells and others have been described. The origins, the hierarchy, the role and the markers of these different cell populations are still controversial. Nevertheless, different strategies have been developed so far in animal models to induce the mobilization and the recruitment of stem cells to the injury site, based on physical training, hormone injection and application of stem cell-capturing coated stents. It should also be mentioned that the limited data currently available derived from clinical trials provide contrasting results about the effective role of vascular cell precursors in restenosis prevention, thus indicating that conclusions derived from studies in animal models cannot always be directly applied to humans and that caution should be used in the manipulation of circulating progenitor cells for therapeutic strategies.

  • Comparative evaluation of different DNA extraction procedures from food samples.

    Publication Date: 01/03/2007 on Biotechnology progress
    by Di Bernardo G, Del Gaudio S, Galderisi U, Cascino A, Cipollaro M
    DOI: 10.1021/bp060182m

    Five methodologies for extracting DNA from food samples are described. The food products analyzed are from either soybean or maize. They were selected on the basis of the mechanical, thermal, and chemical treatments that they had been subjected to during industrial processing. DNA preparations were evaluated for purity, yield, and average fragment size. Two endogenous genes, soybean lectin gene and alcohol dehydrogenase gene (adh1), were used to assess the degree of DNA degradation at different stages of the transformation chain. The goal of this study was to determine the role that extraction methods play in DNA amplification in order to select the best protocol for a food sample. This comparative evaluation can be specifically useful for detection of genetically modified ingredients in a variety of food matrices.

  • RB and RB2/P130 genes cooperate with extrinsic signals to promote differentiation of rat neural stem cells.

    Publication Date: 01/03/2007 on Molecular and cellular neurosciences
    by Jori FP, Galderisi U, Napolitano MA, Cipollaro M, Cascino A, Giordano A, Melone MA
    DOI: 10.1016/j.mcn.2006.11.009

    Mechanisms governing commitment and differentiation of the cells of the nervous system begin to be elucidated: how extrinsic and intrinsic components are related remains poorly understood. To investigate this issue, we overexpressed genes of the retinoblastoma (Rb) family RB and RB2/p130, which play an important role during nerve cell maturation, in rat neural stem cells (NSCs). Immunostaining of neurons, astrocytes and oligodendrocytes in cultures overexpressing pRb or pRb2/p130 revealed that these genes affect lineage specification of differentiating NSCs. We observed modifications in percentage of differentiated cells indicating a shift towards the phenotype induced by culture conditions. Results were confirmed by detection of the expression levels of differentiation markers by RT-PCR. Analysis of BrdU incorporation and detection of an early marker of apoptosis suggest that the effect of pRb and pRb2/p130 overexpression is not dependent on the inhibition of cell proliferation, nor does it rely on the regulation of cell survival. Our findings suggest that Rb family genes are involved in fate determination of the cells of the nervous system. However, their role seems subsidiary to that of the extrinsic signals that promote lineage specification and appear to be mediated by a direct effect on the acquisition of a specific phenotype.

  • An effective method for adenoviral-mediated delivery of small interfering RNA into mesenchymal stem cells.

    Publication Date: 01/02/2007 on Journal of cellular biochemistry
    by Forte A, Napolitano MA, Cipollaro M, Giordano A, Cascino A, Galderisi U
    DOI: 10.1002/jcb.21025

    Mesenchymal stem cells (MSCs) promise as a main actor of cell-based therapeutic strategies, due to their intrinsic ability to differentiate along different mesenchymal cell lineages, able to repair the diseased or injured tissue in which they are localized. The application of MSCs in therapies requires an in depth knowledge of their biology and of the molecular mechanisms leading to MSC multilineage differentiation. The knockdown of target genes through small interfering RNA (siRNA) carried by adenoviruses (Ad) represents a valid tool for the study of the role of specific molecules in cell biology. Unfortunately, MSCs are poorly transfected by conventional Ad serotype 5 (Ad5) vectors. We set up a method to obtain a very efficient transduction of rat MSCs with low doses of unmodified Ad5, carrying the siRNA targeted against the mRNA coding for Rb2/p130 (Ad-siRNA-Rb2), which plays a fundamental role in cell differentiation. This method allowed a 95% transduction rate of Ad-siRNA in MSC, along with a siRNA-mediated 85% decrease of Rb2/p130 mRNA and a 70% decrease of Rb2/p130 protein 48 h after transduction with 50 multiplicities of infection (MOIs) of Ad5. The effect on Rb2/p130 protein persisted 15 days after transduction. Finally, Ad-siRNA did not compromise the viability of transduced MSCs neither induced any cell cycle modification. The effective Ad-siRNA-Rb2 we constructed, together with the efficient method of delivery in MSCs we set up, will allow an in depth analysis of the role of Rb2/p130 in MSC biology and multilineage differentiation.

  • The retinoblastoma gene is involved in multiple aspects of stem cell biology.

    Publication Date: 28/08/2006 on Oncogene
    by Galderisi U, Cipollaro M, Giordano A
    DOI: 10.1038/sj.onc.1209736

    Genetic programs controlling self-renewal and multipotentiality of stem cells have overlapping pathways with cell cycle regulation. Components of cell cycle machinery can play a key role in regulating stem cell self-renewal, proliferation, differentiation and aging. Among the negative regulators of cell cycle progression, the RB family members play a prominent role in controlling several aspects of stem cell biology. Stem cells contribute to tissue homeostasis and must have molecular mechanisms that prevent senescence and hold 'stemness'. RB can induce senescence-associated changes in gene expression and its activity is downregulated in stem cells to preserve self-renewal. Several reports evidenced that RB could play a role in lineage specification of several types of stem cells. RB has a role in myogenesis as well as in cardiogenesis. These effects are not only related to its role in suppressing E2F-responsive genes but also to its ability to modulate the activity of tissue-specific transcription factors. RB is also involved in adipogenesis through a strict control of lineage commitment and differentiation of adipocytes as well in determining the switch between brown and white adipocytes. Also, hematopoietic progenitor cells utilize the RB pathway to modulate cell commitment and differentiation. In this review, we will also discuss the role of the other two RB family members: Rb2/p130 and p107 showing that they have both specific and overlapping functions with RB gene.