Umberto Galderisi

Professor of Molecular Biology

Name Umberto
Surname Galderisi
Institution Università degli Studi della Campania Luigi Vanvitelli
Telephone +39 081 566 75 85
Address Dept. of Experimental Medicine, Via Luigi De Crecchio 7 – 80138 Napoli, Italy
Umberto Galderisi


  • Stem Cells and DNA Repair Capacity: Muse Stem Cells Are Among the Best Performers.

    Publication Date: 01/01/2018 on Advances in experimental medicine and biology
    by Squillaro T, Alessio N, Di Bernardo G, Özcan S, Peluso G, Galderisi U
    DOI: 10.1007/978-4-431-56847-6_5

    Stem cells persist for long periods in the body and experience many intrinsic and extrinsic stresses. For this reason, they present a powerful and effective DNA repair system in order to properly fix DNA damage and avoid the onset of a degenerative process, such as neoplastic transformation or aging. In this chapter, we compare the DNA repair ability of pluripotent stem cells (ESCs, iPSCs, and Muse cells) and other adult stem cells. We also describe personal investigations showing a robust and effective capacity of Muse cells in sensing and repairing DNA following chemical and physical stress. Muse cells can repair DNA through base and nucleotide excision repair mechanisms, BER and NER, respectively. Furthermore, they present a pronounced capacity in repairing double-strand breaks by the nonhomologous end joining (NHEJ) process. The studies addressing the role of DNA damage repair in the biology of stem cells are of paramount importance for comprehension of their functions and, also, for setting up effective and safe stem cell-based therapy.

  • Deregulation of MicroRNAs mediated control of carnitine cycle in prostate cancer: molecular basis and pathophysiological consequences.

    Publication Date: 26/10/2017 on Oncogene
    by Valentino A, Calarco A, Di Salle A, Finicelli M, Crispi S, Calogero RA, Riccardo F, Sciarra A, Gentilucci A, Galderisi U, Margarucci S, Peluso G
    DOI: 10.1038/onc.2017.216

    Cancer cells reprogram their metabolism to maintain both viability and uncontrolled proliferation. Although an interplay between the genetic, epigenetic and metabolic rewiring in cancer is beginning to emerge, it remains unclear how this metabolic plasticity occurs. Here, we report that in prostate cancer cells (PCCs) microRNAs (miRNAs) greatly contribute to deregulation of mitochondrial fatty acid (FA) oxidation via carnitine system modulation. We provide evidence that the downregulation of hsa-miR-124-3p, hsa-miR-129-5p and hsa-miR-378 induced an increase in both expression and activity of CPT1A, CACT and CrAT in malignant prostate cells. Moreover, the analysis of human prostate cancer and prostate control specimens confirmed the aberrant expression of miR-124-3p, miR-129-5p and miR-378 in primary tumors. Forced expression of the miRNAs mentioned above affected tumorigenic properties, such as proliferation, migration and invasion, in PC3 and LNCaP cells regardless of their hormone sensitivity. CPT1A, CACT and CrAT overexpression allow PCCs to be more prone on FA utilization than normal prostate cells, also in the presence of high pyruvate concentration. Finally, the simultaneous increase of CPT1A, CACT and CrAT is fundamental for PCCs to sustain FA oxidation in the presence of heavy lipid load on prostate cancer mitochondria. Indeed, the downregulation of only one of these proteins reduces PCCs metabolic flexibility with the accumulation of FA-intermediate metabolites in the mitochondria. Together, our data implicate carnitine cycle as a primary regulator of adaptive metabolic reprogramming in PCCs and suggest new potential druggable pathways for prevention and treatment of prostate cancer.

  • Misidentified Human Gene Functions with Mouse Models: The Case of the Retinoblastoma Gene Family in Senescence.

    Publication Date: 01/10/2017 on Neoplasia (New York, N.Y.)
    by Alessio N, Capasso S, Ferone A, Di Bernardo G, Cipollaro M, Casale F, Peluso G, Giordano A, Galderisi U
    DOI: 10.1016/j.neo.2017.06.005

    Although mice models rank among the most widely used tools for understanding human genetics, biology, and diseases, differences between orthologous genes among species as close as mammals are possible, particularly in orthologous gene pairs in which one or more paralogous (i.e., duplicated) genes appear in the genomes of the species. Duplicated genes can possess overlapping functions and compensate for each other. The retinoblastoma gene family demonstrates typical composite functionality in its three member genes (i.e., RB1, RB2/P130, and P107), all of which participate in controlling the cell cycle and associated phenomena, including proliferation, quiescence, apoptosis, senescence, and cell differentiation. We analyzed the role of the retinoblastoma gene family in regulating senescence in mice and humans. Silencing experiments with each member of the gene family in mesenchymal stromal cells (MSCs) and fibroblasts from mouse and human tissues demonstrated that RB1 may be indispensable for senescence in mouse cells, but not in human ones, as an example of species specificity. Furthermore, although RB2/P130 seems to be implicated in maintaining human cell senescence, the function of RB1 within any given species might differ by cell type, as an example of cell specificity. For instance, silencing RB1 in mouse fibroblasts induced a reduced senescence not observed in mouse MSCs. Our findings could be useful as a general paradigm of cautions to take when inferring the role of human genes analyzed in animal studies and when examining the role of the retinoblastoma gene family in detail.

  • Adult-onset brain tumors and neurodegeneration: Are polyphenols protective?

    Publication Date: 08/09/2017 on Journal of cellular physiology
    by Squillaro T, Schettino C, Sampaolo S, Galderisi U, Di Iorio G, Giordano A, Melone MAB
    DOI: 10.1002/jcp.26170

    Aging is a primary risk factor for both neurodegenerative disorders (NDs) and tumors such as adult-onset brain tumors. Since NDs and tumors are severe, disabling, progressive and often incurable conditions, they represent a pressing problem in terms of human suffering and economic costs to the healthcare systems. The current challenge for physicians and researchers is to develop new therapeutic strategies in both areas to improve the patients' quality of life. In addition to genetics and environmental stressors, the increase in cellular oxidative stress as one of the potential common etiologies has been reported for both disorders. Recently, the scientific community has focused on the beneficial effects of dietary antioxidant classes, known as nutraceuticals, such as carotenoids, vitamins, and polyphenols. Among these compounds, polyphenols are considered to be one of the most bioactive agents in neurodegeneration and tumor prevention. Despite the beneficial activity of polyphenols, their poor bioavailability and inefficient delivery systems are the main factors limiting their use in medicine and functional food. The development of polymeric nanoparticle-based delivery systems able to encapsulate and preserve polyphenolic compounds may represent a promising tool to enhance their stability, solubility, and cell membrane permeation. In the present review we provide an overview of the main polyphenolic compounds used for ND and brain tumor prevention and treatment that explores their mechanisms of action, recent clinical findings and principal factors limiting their application in medicine.

  • Irradiation of Mesenchymal Stromal Cells With Low and High Doses of Alpha Particles Induces Senescence and/or Apoptosis.

    Publication Date: 01/09/2017 on Journal of cellular biochemistry
    by Alessio N, Esposito G, Galano G, De Rosa R, Anello P, Peluso G, Tabocchini MA, Galderisi U
    DOI: 10.1002/jcb.25961

    The use of high-linear energy transfer charged particles is gaining attention as a medical tool because of the emission of radiations with an efficient cell-killing ability. Considerable interest has developed in the use of targeted alpha-particle therapy for the treatment of micrometastases. Moreover, the use of helium beams is gaining momentum, especially for treating pediatric tumors. We analyzed the effects of alpha particles on bone marrow mesenchymal stromal cells (MSCs), which have a subpopulation of stem cells capable of generating adipocytes, chondrocytes, and osteocytes. Further, these cells contribute toward maintenance of homeostasis in the body. MSCs were irradiated with low and high doses of alpha particles or X-rays and a comparative biological analysis was performed. At a low dose (40 mGy), alpha particles exhibited a limited negative effect on the biology of MSCs compared with X-rays. No significant perturbation of cell cycle was observed, and a minimal increase in apoptosis or senescence was detected. Self-renewal was preserved as revealed by the CFU assay. On the contrary, with 2000 mGy alpha particles, we observed adverse effects on the vitality, functionality, and stemness of MSCs. These results are the consequence of different proportion of cells targeted by alpha particles or X-rays and the quality of induced DNA damage. The present study suggests that radiotherapy with alpha particles may spare healthy stem cells more efficaciously than X-ray treatments, an observation that should be taken into consideration by physicians while planning irradiation of tumor areas close to stem cell niches, such as bone marrow. J. Cell. Biochem. 118: 2993-3002, 2017. © 2017 Wiley Periodicals, Inc.

  • Patients with bicuspid and tricuspid aortic valve exhibit distinct regional microrna signatures in mildly dilated ascending aorta.

    Publication Date: 01/06/2017 on Heart and vessels
    by Albinsson S, Della Corte A, Alajbegovic A, Krawczyk KK, Bancone C, Galderisi U, Cipollaro M, De Feo M, Forte A
    DOI: 10.1007/s00380-016-0942-7

    MicroRNAs are able to modulate gene expression in a range of diseases. We focused on microRNAs as potential contributors to the pathogenesis of ascending aorta (AA) dilatation in patients with stenotic tricuspid (TAV) or bicuspid aortic valve (BAV). Aortic specimens were collected from the 'concavity' and the 'convexity' of mildly dilated AAs and of normal AAs from heart transplant donors. Aortic RNA was analyzed through PCR arrays, profiling the expression of 84 microRNAs involved in cardiovascular disease. An in silico analysis identified the potential microRNA-mRNA interactions and the enriched KEGG pathways potentially affected by microRNA changes in dilated AAs. Distinct signatures of differentially expressed microRNAs are evident in TAV and BAV patients vs. donors, as well as differences between aortic concavity and convexity in patients only. MicroRNA changes suggest a switch of SMC phenotype, with particular reference to TAV concavity. MicroRNA changes potentially affecting mechanotransduction pathways exhibit a higher prevalence in BAV convexity and in TAV concavity, with particular reference to TGF-β1, Hippo, and PI3K/Akt/FoxO pathways. Actin cytoskeleton emerges as potentially affected by microRNA changes in BAV convexity only. MicroRNAs could play distinct roles in BAV and TAV aortopathy, with possible implications in diagnosis and therapy.

  • Alterations in the carnitine cycle in a mouse model of Rett syndrome.

    Publication Date: 02/02/2017 on Scientific reports
    by Mucerino S, Di Salle A, Alessio N, Margarucci S, Nicolai R, Melone MA, Galderisi U, Peluso G
    DOI: 10.1038/srep41824

    Rett syndrome (RTT) is a neurodevelopmental disease that leads to intellectual deficit, motor disability, epilepsy and increased risk of sudden death. Although in up to 95% of cases this disease is caused by de novo loss-of-function mutations in the X-linked methyl-CpG binding protein 2 gene, it is a multisystem disease associated also with mitochondrial metabolic imbalance. In addition, the presence of long QT intervals (LQT) on the patients' electrocardiograms has been associated with the development of ventricular tachyarrhythmias and sudden death. In the attempt to shed light on the mechanism underlying heart failure in RTT, we investigated the contribution of the carnitine cycle to the onset of mitochondrial dysfunction in the cardiac tissues of two subgroups of RTT mice, namely Mecp2(+/-) NQTc and Mecp2(+/-) LQTc mice, that have a normal and an LQT interval, respectively. We found that carnitine palmitoyltransferase 1 A/B and carnitine acylcarnitine translocase were significantly upregulated at mRNA and protein level in the heart of Mecp2(+/-) mice. Moreover, the carnitine system was imbalanced in Mecp2(+/-) LQTc mice due to decreased carnitine acylcarnitine transferase expression. By causing accumulation of intramitochondrial acylcarnitines, this imbalance exacerbated incomplete fatty acid oxidation, which, in turn, could contribute to mitochondrial overload and sudden death.

  • Mesenchymal stromal cells having inactivated RB1 survive following low irradiation and accumulate damaged DNA: Hints for side effects following radiotherapy.

    Publication Date: 01/02/2017 on Cell cycle (Georgetown, Tex.)
    by Alessio N, Capasso S, Di Bernardo G, Cappabianca S, Casale F, Calarco A, Cipollaro M, Peluso G, Galderisi U
    DOI: 10.1080/15384101.2016.1175798

    Following radiotherapy, bone sarcomas account for a significant percentage of recurring tumors. This risk is further increased in patients with hereditary retinoblastoma that undergo radiotherapy. We analyzed the effect of low and medium dose radiation on mesenchymal stromal cells (MSCs) with inactivated RB1 gene to gain insights on the molecular mechanisms that can induce second malignant neoplasm in cancer survivors. MSC cultures contain subpopulations of mesenchymal stem cells and committed progenitors that can differentiate into mesodermal derivatives: adipocytes, chondrocytes, and osteocytes. These stem cells and committed osteoblast precursors are the cell of origin in osteosarcoma, and RB1 gene mutations have a strong role in its pathogenesis. Following 40 and 2000 mGy X-ray exposure, MSCs with inactivated RB1 do not proliferate and accumulate high levels of unrepaired DNA as detected by persistence of gamma-H2AX foci. In samples with inactivated RB1 the radiation treatment did not increase apoptosis, necrosis or senescence versus untreated cells. Following radiation, CFU analysis showed a discrete number of cells with clonogenic capacity in cultures with silenced RB1. We extended our analysis to the other members of retinoblastoma gene family: RB2/P130 and P107. Also in the MSCs with silenced RB2/P130 and P107 we detected the presence of cells with unrepaired DNA following X-ray irradiation. Cells with unrepaired DNA may represent a reservoir of cells that may undergo neoplastic transformation. Our study suggests that, following radiotherapy, cancer patients with mutations of retinoblastoma genes may be under strict controls to evaluate onset of secondary neoplasms following radiotherapy.

  • Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes.

    Publication Date: 18/01/2017 on Journal of cellular physiology
    by Squillaro T, Antonucci I, Alessio N, Esposito A, Cipollaro M, Melone MA, Peluso G, Stuppia L, Galderisi U
    DOI: 10.1002/jcp.25807

    Lysosomal storage disorders (LDS) comprise a group of rare multisystemic diseases resulting from inherited gene mutations that impair lysosomal homeostasis. The most common LSDs, Gaucher disease (GD), and Fabry disease (FD) are caused by deficiencies in the lysosomal glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes, respectively. Given the systemic nature of enzyme deficiency, we hypothesized that the stem cell compartment of GD and FD patients might be also affected. Among stem cells, mesenchymal stem cells (MSCs) are a commonly investigated population given their role in hematopoiesis and the homeostatic maintenance of many organs and tissues. Since the impairment of MSC functions could pose profound consequences on body physiology, we evaluated whether GBA and GLA silencing could affect the biology of MSCs isolated from bone marrow and amniotic fluid. Those cell populations were chosen given the former's key role in organ physiology and the latter's intriguing potential as an alternative stem cell model for human genetic disease. Our results revealed that GBA and GLA deficiencies prompted cell cycle arrest along with the impairment of autophagic flux and an increase of apoptotic and senescent cell percentages. Moreover, an increase in ataxia-telangiectasia-mutated staining 1 hr after oxidative stress induction and a return to basal level at 48 hr, along with persistent gamma-H2AX staining, indicated that MSCs properly activated DNA repair signaling, though some damages remained unrepaired. Our data therefore suggest that MSCs with reduced GBA or GLA activity are prone to apoptosis and senescence due to impaired autophagy and DNA repair capacity.

  • The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation.

    Publication Date: 02/01/2017 on Cell cycle (Georgetown, Tex.)
    by Alessio N, Özcan S, Tatsumi K, Murat A, Peluso G, Dezawa M, Galderisi U
    DOI: 10.1080/15384101.2016.1211215

    Mesenchymal stromal cells (MSCs) are a heterogeneous population, which contain several cell phenotypes: mesenchymal stem cells, progenitor cells, fibroblasts and other type of cells. Previously, we identified unique stem cells that we named multilineage-differentiating stress enduring (Muse) cells as one to several percent of MSCs of the bone marrow, adipose tissue and dermis. Among different cell populations in MSCs, Muse cells, positive for pluripotent surface marker SSEA-3, may represent cells responsible for pluripotent-like property of MSCs, since they express pluripotency genes, able to differentiated into triploblastic cells from a single cells and are self-renewable. MSCs release biologically active factors that have profound effects on local cellular dynamics. A thorough examination of MSC secretome seems essential for understanding the physiological functions exerted by these cells in our organism and also for rational cellular therapy design. In this setting, studies on secretome of Muse cells may shed light on pathways that are associated with their specific features. Our findings evidenced that secretomes of MSCs and Muse cells contain factors that regulate extracellular matrix remodeling, ox-redox activities and immune system. Muse cells appear to secrete factors that may preserve their stem cell features, allow survival under stress conditions and may contribute to their immunomodulation capacity. In detail, the proteins belonging to protein kinase A signaling, FXR/RXR activation and LXR/RXR activation pathways may play a role in regulation of Muse stem cell features. These last 2 pathways together with proteins associated with antigen presentation pathway and coagulation system may play a role in immunomodulation.