Umberto Galderisi

Professor of Molecular Biology

Name Umberto
Surname Galderisi
Institution Università degli Studi della Campania Luigi Vanvitelli
Telephone +39 081 566 75 85
E-Mail umberto.galderisi@unicampania.it
Address Dept. of Experimental Medicine, Via Luigi De Crecchio 7 – 80138 Napoli, Italy
Umberto Galderisi

Member PUBLICATIONS

  • Positively charged polymers modulate the fate of human mesenchymal stromal cells via ephrinB2/EphB4 signaling.

    Publication Date: 01/09/2016 on Stem cell research
    by De Luca I, Di Salle A, Alessio N, Margarucci S, Simeone M, Galderisi U, Calarco A, Peluso G
    DOI: 10.1016/j.scr.2016.07.005

    Understanding the mechanisms by which mesenchymal stromal cells (MSCs) interact with the physical properties (e.g. topography, charge, ζ-potential, and contact angle) of polymeric surfaces is essential to design new biomaterials capable of regulating stem cell behavior. The present study investigated the ability of two polymers (pHM1 and pHM3) with different positive surface charge densities to modulate the differentiation of MSCs into osteoblast-like phenotype via cell-cell ephrinB2/EphB4 signaling. Although pHM1 promoted the phosphorylation of EphB4, leading to cell differentiation, pHM3, characterized by a high positive surface charge density, had no significant effect on EphB4 activation or MSCs differentiation. When the MSCs were cultured on pHM1 in the presence of a forward signaling blocking peptide, the osteoblast differentiation was compromised. Our results demonstrated that the ephrinB2/EphB4 interaction was required for MSCs differentiation into an osteoblast-like phenotype and that the presence of a high positive surface charge density altered this interaction.

  • Epigenetic regulation of TGF-β1 signalling in dilative aortopathy of the thoracic ascending aorta.

    Publication Date: 01/08/2016 on Clinical science (London, England : 1979)
    by Forte A, Galderisi U, Cipollaro M, De Feo M, Della Corte A
    DOI: 10.1042/CS20160222

    The term 'epigenetics' refers to heritable, reversible DNA or histone modifications that affect gene expression without modifying the DNA sequence. Epigenetic modulation of gene expression also includes the RNA interference mechanism. Epigenetic regulation of gene expression is fundamental during development and throughout life, also playing a central role in disease progression. The transforming growth factor β1 (TGF-β1) and its downstream effectors are key players in tissue repair and fibrosis, extracellular matrix remodelling, inflammation, cell proliferation and migration. TGF-β1 can also induce cell switch in epithelial-to-mesenchymal transition, leading to myofibroblast transdifferentiation. Cellular pathways triggered by TGF-β1 in thoracic ascending aorta dilatation have relevant roles to play in remodelling of the vascular wall by virtue of their association with monogenic syndromes that implicate an aortic aneurysm, including Loeys-Dietz and Marfan's syndromes. Several studies and reviews have focused on the progression of aneurysms in the abdominal aorta, but research efforts are now increasingly being focused on pathogenic mechanisms of thoracic ascending aorta dilatation. The present review summarizes the most recent findings concerning the epigenetic regulation of effectors of TGF-β1 pathways, triggered by sporadic dilative aortopathy of the thoracic ascending aorta in the presence of a tricuspid or bicuspid aortic valve, a congenital malformation occurring in 0.5-2% of the general population. A more in-depth comprehension of the epigenetic alterations associated with TGF-β1 canonical and non-canonical pathways in dilatation of the ascending aorta could be helpful to clarify its pathogenesis, identify early potential biomarkers of disease, and, possibly, develop preventive and therapeutic strategies.

  • Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses.

    Publication Date: 01/07/2016 on Aging
    by Özcan S, Alessio N, Acar MB, Mert E, Omerli F, Peluso G, Galderisi U
    DOI: 10.18632/aging.100971

    Senescent cells secrete senescence-associated secretory phenotype (SASP) proteins to carry out several functions, such as sensitizing surrounding cells to senesce; immunomodulation; impairing or fostering cancer growth; and promoting tissue development. Identifying secreted factors that achieve such tasks is a challenging issue since the profile of secreted proteins depends on genotoxic stress and cell type. Currently, researchers are trying to identify common markers for SASP. The present investigation compared the secretome composition of five different senescent phenotypes in two different cell types: bone marrow and adipose mesenchymal stromal cells (MSC). We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation, and replicative exhaustion. We took advantage of LC-MS/MS proteome identification and subsequent gene ontology (GO) evaluation to perform an unbiased analysis (hypothesis free manner) of senescent secretomes. GO analysis allowed us to distribute SASP components into four classes: extracellular matrix/cytoskeleton/cell junctions; metabolic processes; ox-redox factors; and regulators of gene expression. We used Ingenuity Pathway Analysis (IPA) to determine common pathways among the different senescent phenotypes. This investigation, along with identification of eleven proteins that were exclusively expressed in all the analyzed senescent phenotypes, permitted the identification of three key signaling paths: MMP2 - TIMP2; IGFBP3 - PAI-1; and Peroxiredoxin 6 - ERP46 - PARK7 - Cathepsin D - Major vault protein. We suggest that these paths could be involved in the paracrine circuit that induces senescence in neighboring cells and may confer apoptosis resistance to senescent cells.

  • G-CSF contributes at the healing of tunica media of arteriotomy-injured rat carotids by promoting differentiation of vascular smooth muscle cells.

    Publication Date: 01/01/2016 on Journal of cellular physiology
    by Rinaldi B, Finicelli M, Donniacuo M, Bernardo GD, Gritti G, Gaudio SD, Forte A, Peluso G, Cipollaro M, Rossi F, Galderisi U
    DOI: 10.1002/jcp.25074

    Restenosis is a complex pathophysiological disease whose causative mechanisms are not fully understood. Previous studies allowed us to demonstrate the efficacy of bone marrow mesenchymal stromal cells (MSCs) transplantation in limiting the pathophysiological remodeling in a model of arteriotomy-induced (re) stenosis. In the current research we studied the effectiveness of G-CSF treatment on male rate rats that were subjected carotid arteriotomy in order to evaluate a potentially effective non-invasive strategy that recapitulates the MSC-mediated recovery of injured vessels. WKY male rats were subjected carotid arteriotomy and given a nine day treatment (3 days pre- to 6 days post-arteriotomy) with G-CSF or saline. Carotids were harvested 7 and 30 days following arteriotomy (early- and late-phase, respectively). Although morphometrical analysis did not reveal differences in lumen narrowing between G-CSF- and PBS-carotids 30 days following arteriotomy, we detected a noticeable conservative effect of G-CSF treatment on vascular wall morphology. Histological and molecular analysis revealed an increase in cellularity within the tunica media with a concomitant increase of the VSMCs differentiation markers both at early- and late-phases of (re) stenotic response in G-CSF-treated carotids (Sm22-alpha, Myocd, and Smtn). These findings were accompanied by the downregulation of oxidative stress-related genes in G-CSF-injured rats. The effect exerted by G-CSF in our model of arteriotomy-induced (re) stenosis seemed support the recovery of the architecture of the tunica media of injured vessels by: (i) inducing VSMCs differentiation; and (ii) limiting the oxidative-stress response induced by arteriotomy.

  • Clinical Trials With Mesenchymal Stem Cells: An Update.

    Publication Date: 01/01/2016 on Cell transplantation
    by Squillaro T, Peluso G, Galderisi U
    DOI: 10.3727/096368915X689622

    In the last year, the promising features of mesenchymal stem cells (MSCs), including their regenerative properties and ability to differentiate into diverse cell lineages, have generated great interest among researchers whose work has offered intriguing perspectives on cell-based therapies for various diseases. Currently the most commonly used adult stem cells in regenerative medicine, MSCs, can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes. However, heterogeneous procedures for isolating and cultivating MSCs among laboratories have prompted the International Society for Cellular Therapy (ISCT) to issue criteria for identifying unique populations of these cells. Consequently, the isolation of MSCs according to ISCT criteria has produced heterogeneous, nonclonal cultures of stromal cells containing stem cells with different multipotent properties, committed progenitors, and differentiated cells. Though the nature and functions of MSCs remain unclear, nonclonal stromal cultures obtained from bone marrow and other tissues currently serve as sources of putative MSCs for therapeutic purposes, and several findings underscore their effectiveness in treating different diseases. To date, 493 MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health. In the present article, we provide a comprehensive review of MSC-based clinical trials conducted worldwide that scrutinizes biological properties of MSCs, elucidates recent clinical findings and clinical trial phases of investigation, highlights therapeutic effects of MSCs, and identifies principal criticisms of the use of these cells. In particular, we analyze clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney, and lung, as well as cardiovascular, bone and cartilage, neurological, and autoimmune diseases.

  • Myeloma cells can corrupt senescent mesenchymal stromal cells and impair their anti-tumor activity.

    Publication Date: 24/11/2015 on Oncotarget
    by Özcan S, Alessio N, Acar MB, Toprak G, Gönen ZB, Peluso G, Galderisi U
    DOI: 10.18632/oncotarget.5430

    Senescent cells secrete several molecules that help to prevent the progression of cancer. However, cancer cells can also misuse these secreted elements to survive and grow. Since the molecular and functional bases of these different elements remain poorly understood, we analyzed the effect of senescent mesenchymal stromal cell (MSC) secretome on the biology of ARH-77 myeloma cells. In addition to differentiating in mesodermal derivatives, MSCs have sustained interest among researchers by supporting hematopoiesis, contributing to tissue homeostasis, and modulating inflammatory response, all activities accomplished primarily by the secretion of cytokines and growth factors. Moreover, senescence profoundly affects the composition of MSC secretome. In this study, we induced MSC senescence by oxidative stress, DNA damage, and replicative exhaustion. While the first two are considered to induce acute senescence, extensive proliferation triggers replicative (i.e., chronic) senescence. We cultivated cancer cells in the presence of acute and chronic senescent MSC-conditioned media and evaluated their proliferation, DNA damage, apoptosis, and senescence. Our findings revealed that senescent secretomes induced apoptosis or senescence, if not both, to different extents. This anti-tumor activity became heavily impaired when secretomes were collected from senescent cells previously in contact (i.e., primed) with cancer cells. Our analysis of senescent MSC secretomes with LC-MS/MS followed by Gene Ontology classification further indicated that priming with cancer profoundly affected secretome composition by abrogating the production of pro-senescent and apoptotic factors. We thus showed for the first time that compared with cancer-primed MSCs, naïve senescent MSCs can exert different effects on tumor progression.

  • Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells.

    Publication Date: 24/11/2015 on Oncotarget
    by Capasso S, Alessio N, Squillaro T, Di Bernardo G, Melone MA, Cipollaro M, Peluso G, Galderisi U
    DOI: 10.18632/oncotarget.6277

    A sharp definition of what a senescent cell is still lacking since we do not have in depth understanding of mechanisms that induce cellular senescence. In addition, senescent cells are heterogeneous, in that not all of them express the same genes and present the same phenotype. To further clarify the classification of senescent cells, hints may be derived by the study of cellular metabolism, autophagy and proteasome activity. In this scenario, we decided to study these biological features in senescence of Mesenchymal Stromal Cells (MSC). These cells contain a subpopulation of stem cells that are able to differentiate in mesodermal derivatives (adipocytes, chondrocytes, osteocytes). In addition, they can also contribute to the homeostatic maintenance of many organs, hence, their senescence could be very deleterious for human body functions. We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation and replicative exhaustion. The first three are considered inducers of acute senescence while extensive proliferation triggers replicative senescence also named as chronic senescence. In all conditions, but replicative and high IR dose senescence, we detected a reduction of the autophagic flux, while proteasome activity was impaired in peroxide-treated and irradiated cells. Differences were observed also in metabolic status. In general, all senescent cells evidenced metabolic inflexibility and prefer to use glucose as energy fuel. Irradiated cells with low dose of X-ray and replicative senescent cells show a residual capacity to use fatty acids and glutamine as alternative fuels, respectively. Our study may be useful to discriminate among different senescent phenotypes.

  • Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process.

    Publication Date: 10/04/2015 on Oncotarget
    by Alessio N, Del Gaudio S, Capasso S, Di Bernardo G, Cappabianca S, Cipollaro M, Peluso G, Galderisi U
    DOI: 10.18632/oncotarget.2692

    Low doses of radiation may have profound effects on cellular function. Individuals may be exposed to low doses of radiation either intentionally for medical purposes or accidentally, such as those exposed to radiological terrorism or those who live near illegal radioactive waste dumpsites.We studied the effects of low dose radiation on human bone marrow mesenchymal stromal cells (MSC), which contain a subpopulation of stem cells able to differentiate in bone, cartilage, and fat; support hematopoiesis; and contribute to body's homeostasis.The main outcome of low radiation exposure, besides reduction of cell cycling, is the triggering of senescence, while the contribution to apoptosis is minimal. We also showed that low radiation affected the autophagic flux. We hypothesize that the autophagy prevented radiation deteriorative processes, and its decline contributed to senescence.An increase in ATM staining one and six hours post-irradiation and return to basal level at 48 hours, along with persistent gamma-H2AX staining, indicated that MSC properly activated the DNA repair signaling, though some damages remained unrepaired, mainly in non-cycling cells. This suggested that the impaired DNA repair capacity of irradiated MSC seemed mainly related to the reduced activity of a non-homologous end-joining (NHEJ) system rather than HR (homologous recombination).

  • De-regulated expression of the BRG1 chromatin remodeling factor in bone marrow mesenchymal stromal cells induces senescence associated with the silencing of NANOG and changes in the levels of chromatin proteins.

    Publication Date: 01/01/2015 on Cell cycle (Georgetown, Tex.)
    by Squillaro T, Severino V, Alessio N, Farina A, Di Bernardo G, Cipollaro M, Peluso G, Chambery A, Galderisi U
    DOI: 10.4161/15384101.2014.995053

    Stem cells have a peculiar chromatin architecture that contributes to their unique properties, including uncommitted status, multi/pluripotency and self-renewal. We analyzed the effect of the de-regulation of the SWI/SNF chromatin remodeling complex in mesenchymal stromal cells (MSC) through the silencing and up-regulation of BRG1, which is the ATPase subunit of the complex. The altered expression of BRG1 promoted the senescence of MSC with suppression of the NANOG transcription, which is part of the transcriptional circuitry governing stem cell functions. To gain insight on the way NANOG was silenced, we evaluated how the de-regulated BRG1 expression affect the binding of activators and repressors on the NANOG promoter. We found 4 E2F binding motifs on NANOG promoter, which can be occupied by RB1 and RB2/P130. These are members of the retinoblastoma gene family. In MSC with a silenced BRG1, the relative binding of the 2 retinoblastoma proteins increased, and this was associated with the recruitment of DNMT1. This induced the methylation of CpG on the NANOG promoter. Opposingly, when a high level of BRG1 was present, the same E2F binding motifs were docking sites for BRG1, which induced chromatin compaction without CpG methylation but with increased histone deacetylation, associated with the presence of HDAC1 on E2F binding sites. Besides the sharp regulation of the NANOG expression, we evidenced, through proteomic analysis, that the de-regulation of the SWI/SNF function affected the expression of histones and other nuclear proteins involved in "nuclear architecture," suggesting that BRG1 may act as global regulator of gene expression.

  • Novel potential targets for prevention of arterial restenosis: insights from the pre-clinical research.

    Publication Date: 01/12/2014 on Clinical science (London, England : 1979)
    by Forte A, Rinaldi B, Berrino L, Rossi F, Galderisi U, Cipollaro M
    DOI: 10.1042/CS20140131

    Restenosis is the pathophysiological process occurring in 10-15% of patients submitted to revascularization procedures of coronary, carotid and peripheral arteries. It can be considered as an excessive healing reaction of the vascular wall subjected to arterial/venous bypass graft interposition, endarterectomy or angioplasty. The advent of bare metal stents, drug-eluting stents and of the more recent drug-eluting balloons, have significantly reduced, but not eliminated, the incidence of restenosis, which remains a clinically relevant problem. Biomedical research in pre-clinical animal models of (re)stenosis, despite its limitations, has contributed enormously to the identification of processes involved in restenosis progression, going well beyond the initial dogma of a primarily proliferative disease. Although the main molecular and cellular mechanisms underlying restenosis have been well described, new signalling molecules and cell types controlling the progress of restenosis are continuously being discovered. In particular, microRNAs and vascular progenitor cells have recently been shown to play a key role in this pathophysiological process. In addition, the advanced highly sensitive high-throughput analyses of molecular alterations at the transcriptome, proteome and metabolome levels occurring in injured vessels in animal models of disease and in human specimens serve as a basis to identify novel potential therapeutic targets for restenosis. Molecular analyses are also contributing to the identification of reliable circulating biomarkers predictive of post-interventional restenosis in patients, which could be potentially helpful in the establishment of an early diagnosis and therapy. The present review summarizes the most recent and promising therapeutic strategies identified in experimental models of (re)stenosis and potentially translatable to patients subjected to revascularization procedures.