Umberto Galderisi

Professor of Molecular Biology

Name Umberto
Surname Galderisi
Institution Università degli Studi della Campania Luigi Vanvitelli
Telephone +39 081 566 75 85
Address Dept. of Experimental Medicine, Via Luigi De Crecchio 7 – 80138 Napoli, Italy
Umberto Galderisi


  • Silencing of RB1 but not of RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells.

    Publication Date: 01/05/2013 on Cellular and molecular life sciences : CMLS
    by Alessio N, Bohn W, Rauchberger V, Rizzolio F, Cipollaro M, Rosemann M, Irmler M, Beckers J, Giordano A, Galderisi U
    DOI: 10.1007/s00018-012-1224-x

    Stem cell senescence is considered deleterious because it may impair tissue renewal and function. On the other hand, senescence may arrest the uncontrolled growth of transformed stem cells and protect organisms from cancer. This double function of senescence is strictly linked to the activity of genes that the control cell cycle such as the retinoblastoma proteins RB1, RB2/P130, and P107. We took advantage of the RNA interference technique to analyze the role of these proteins in the biology of mesenchymal stem cells (MSC). Cells lacking RB1 were prone to DNA damage. They showed elevated levels of p53 and p21(cip1) and increased regulation of RB2/P130 and P107 expression. These cells gradually adopted a senescent phenotype with impairment of self-renewal properties. No significant modification of cell growth was observed as it occurs in other cell types or systems. In cells with silenced RB2/P130, we detected a reduction of DNA damage along with a higher proliferation rate, an increase in clonogenic ability, and the diminution of apoptosis and senescence. Cells with silenced RB2/P130 were cultivated for extended periods of time without adopting a transformed phenotype. Of note, acute lowering of P107 did not induce relevant changes in the in vitro behavior of MSC. We also analyzed cell commitment and the osteo-chondro-adipogenic differentiation process of clones derived by MSC cultures. In all clones obtained from cells with silenced retinoblastoma genes, we observed a reduction in the ability to differentiate compared with the control clones. In summary, our data show evidence that the silencing of the expression of RB1 or RB2/P130 is not compensated by other gene family members, and this profoundly affects MSC functions.

  • The genotoxicity of PEI-based nanoparticles is reduced by acetylation of polyethylenimine amines in human primary cells.

    Publication Date: 27/03/2013 on Toxicology letters
    by Calarco A, Bosetti M, Margarucci S, Fusaro L, Nicolì E, Petillo O, Cannas M, Galderisi U, Peluso G
    DOI: 10.1016/j.toxlet.2012.12.019

    The ultrasmall size and unique properties of polymeric nanoparticles (NPs) have led to raising concerns about their potential cyto- and genotoxicity on biological systems. Polyethylenimine (PEI) is a highly positive charged polymer and is known to have varying degree of toxic effect to cells based on its chemical structure (i.e., amount of primary and secondary amine). Herein, drug delivery carriers such as PEI-PLGA nanoparticles (PEI-NPs) and acetylated PEI-PLGA nanoparticles (AcPEI-NPs) were utilized to examine the effect of acetylation on NPs biocompatibility and genotoxicity, using human primary cells as in vitro model. Cell uptake of NPs was characterized along with their effects on cellular viability. The results indicate that both NPs showed an equivalent behavior in terms of uptake and biocompatibility. In depth analysis of NP uptake on cell biology evidenced that these nanoparticles induced dose dependant genotoxic effects. This phenomenon was significantly reduced by PEI acetylation. Endocytosed PEI-NPs trigger an oxidative stress on cells by inducing the production of reactive oxygen species (ROS), which cause DNA damage without apparently affecting cell viability. Thus, the genotoxicity of nanoparticles, that could be used as non-viral drug carriers, should be evaluated based on the intracellular level of ROS generation and DNA damage even in absence of a significant cell death.

  • Early cell changes and TGFβ pathway alterations in the aortopathy associated with bicuspid aortic valve stenosis.

    Publication Date: 01/01/2013 on Clinical science (London, England : 1979)
    by Forte A, Della Corte A, Grossi M, Bancone C, Provenzano R, Finicelli M, De Feo M, De Santo LS, Nappi G, Cotrufo M, Galderisi U, Cipollaro M
    DOI: 10.1042/CS20120324

    Previous studies on BAV (bicuspid aortic valve)-related aortopathy, whose aetiology is still debated, have focused mainly on severe dilatations. In the present study, we aimed to detect earlier signs of aortopathy. Specimens were collected from the 'concavity' (lesser curvature) and the 'convexity' (greater curvature) of mildly dilated AAs (ascending aortas; diameter ≤4 cm) with stenotic TAV (tricuspid aortic valve) or BAV and from donor normal aortas. Specimens were submitted to morphometry, immunohistochemistry and differential gene-expression analysis, focusing on SMC (smooth muscle cell) phenotype, remodelling, MF (myofibroblast) differentiation and TGFβ (transforming growth factor β) pathway. Smoothelin and myocardin mRNAs decreased in all the samples from patients, with the exception of those from BAV convexity, where a change in orientation of smoothelin-positive SMCs and an increase of α-SMA (α-smooth muscle actin) mRNA occurred. Dilated aortas from BAV and TAV patients showed both shared and distinct alterations concerning the TGFβ pathway, including an increased TGFβ and TGFβR2 (TGFβ receptor 2) expression in both groups and a decreased TGFβR1 expression in BAV samples only. Despite a decrease of the mRNA coding for the ED-A (extra domain-A) isoform of FN (fibronectin) in the BAV convexity, the onset of the expression of the corresponding protein in the media was observed in dilated aortas, whereas the normal media from donors was negative for this isoform. This discrepancy could be related to modifications in the intima, normally expressing ED-A FN and showing an altered structure in mild aortic dilatations in comparison with donor aorta. Our results suggest that changes in SMC phenotype and, likely, MF differentiation, occur early in the aortopathy associated with valve stenosis. The defective expression of TGFβR1 in BAV might be a constitutive feature, while other changes we reported could be influenced by haemodynamics.

  • Efficient cultivation of neural stem cells with controlled delivery of FGF-2.

    Publication Date: 01/01/2013 on Stem cell research
    by Galderisi U, Peluso G, Di Bernardo G, Calarco A, D'Apolito M, Petillo O, Cipollaro M, Fusco FR, Melone MA
    DOI: 10.1016/j.scr.2012.09.001

    Neural stem cells (NSCs) raised the hope for cell-based therapies in human neurodevelopmental and neurodegenerative diseases. Current research strategies aim to isolate, enrich, and propagate homogeneous populations of neural stem cells. Unfortunately, several concerns with NSC cultures currently may limit their therapeutic promise. Exhaustion of growth factors and/or their uncontrolled release with burst and fall in their concentration may greatly affect the in vitro behavior of NSCs. In this context, we investigate whether a device containing heparan sulfate (HS), which is a co-factor in growth factor-mediated cell proliferation and differentiation, could potentiate and prolong the delivery of fibroblast growth factor-2 (FGF-2) and thus improve in vitro NSC cultivation. We demonstrated that NSCs cultivated in media with a controlled release of FGF-2 from a polyelectrolyte polymer showed a higher proliferation rate, and reduced apoptosis and senescence. In these experimental conditions NSCs preserve their stemness properties for a longer period of time compared with controls. Also of interest is that cell fate properties are conserved as well. The controlled release of FGF-2 reduced the level of oxidative stress and this is associated with a lower level of damaged DNA. This result may explain the reduced level of senescence and apoptosis in NSCs cultivated in the presence of hydrogel-releasing FGF-2.

  • Mutant huntingtin regulates EGF receptor fate in non-neuronal cells lacking wild-type protein.

    Publication Date: 01/01/2013 on Biochimica et biophysica acta
    by Melone MA, Calarco A, Petillo O, Margarucci S, Colucci-D'Amato L, Galderisi U, Koverech G, Peluso G
    DOI: 10.1016/j.bbadis.2012.09.001

    Huntingtin (htt) is a scaffold protein localized at the subcellular level and is involved in coordinating the activity of several protein for signaling and intracellular transport. The emerging properties of htt in intracellular trafficking prompted us to study the role of mutant htt (polyQ-htt) in the intracellular fate of epidermal growth factor receptor (EGFR), whose activity seems to be strictly regulated by htt. In particular, to evaluate whether protein trafficking dysfunction occurs in non-neuronal cells in the absence of functional htt, we monitored the EGFR protein in fibroblasts from homozygotic HD patients and their healthy counterpart. We found that polyQ-htt controls EGFR degradation and recycling. Lack of wild-type htt caused alteration of the ubiquitination cycle, formation of EGFR-incorporating high-molecular weight protein aggregates and abnormal EGFR distribution in endosomes of the degradation and recycling pathways after EGF stimulation. PolyQ-htt-induced alteration of EGFR trafficking affected cell migration and proliferation, at least in part, through inhibition of ERK signaling. To our knowledge the data here reported represent the first signaling and phenotypic characterization of polyQ-htt involvement in the modulation of growth factor stimulation in non-neuronal cells.

  • Low concentrations of isothiocyanates protect mesenchymal stem cells from oxidative injuries, while high concentrations exacerbate DNA damage.

    Publication Date: 01/09/2012 on Apoptosis : an international journal on programmed cell death
    by Zanichelli F, Capasso S, Di Bernardo G, Cipollaro M, Pagnotta E, Cartenì M, Casale F, Iori R, Giordano A, Galderisi U
    DOI: 10.1007/s10495-012-0740-3

    Isothiocyanates (ITCs) are molecules naturally present in many cruciferous vegetables (broccoli, black radish, daikon radish, and cauliflowers). Several studies suggest that cruciferous vegetable consumption may reduce cancer risk and slow the aging process. To investigate the effect of ITCs on cellular DNA damage, we evaluated the effects of two different ITCs [sulforaphane (SFN) and raphasatin (RPS)] on the biology of human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, contribute to the homeostatic maintenance of many organs. The choice of SFN and RPS relies on two considerations: they are among the most popular cruciferous vegetables in the diet of western and eastern countries, respectively, and their bioactive properties may differ since they possess specific molecular moiety. Our investigation evidenced that MSCs incubated with low doses of SFN and RPS show reduced in vitro oxidative stress. Moreover, these cells are protected from oxidative damages induced by hydrogen peroxide, while no protection was evident following treatment with the UV ray of a double strand DNA damaging drug, such as doxorubicin. High concentrations of both ITCs induced cytotoxic effects in MSC cultures and further increased DNA damage induced by peroxides. In summary, our study suggests that ITCs, at low doses, may contribute to slowing the aging process related to oxidative DNA damage. Moreover, in cancer treatment, low doses of ITCs may be used as an adjuvant to reduce chemotherapy-induced oxidative stress, while high doses may synergize with anticancer drugs to promote cell DNA damage.

  • Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect.

    Publication Date: 01/04/2012 on Age (Dordrecht, Netherlands)
    by Zanichelli F, Capasso S, Cipollaro M, Pagnotta E, Cartenì M, Casale F, Iori R, Galderisi U
    DOI: 10.1007/s11357-011-9231-7

    Brassica vegetables are attracting a great deal of attention as healthy foods because of the fact that they contain substantial amounts of secondary metabolite glucosinolates that are converted into isothiocyanates, such as sulforaphane [(-)1-isothiocyanato-4R-(methylsulfinyl)-butane] (R-SFN), through the actions of chopping or chewing the vegetables. Several studies have analyzed the biological and molecular mechanisms of the anti-cancer activity of synthetic R,S-sulforaphane, which is thought to be a result of its antioxidant properties and its ability to inhibit histone deacetylase enzymes (HDAC). Few studies have addressed the possible antioxidant effects of R-SFN, which could protect cells from the free radical damage that strongly contribute to aging. Moreover, little is known about the effect of R-SFN on stem cells whose longevity is implicated in human aging. We evaluated the effects of R-SFN on the biology on human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, support hematopoiesis, and contribute to the homeostatic maintenance of many organs and tissues. Our investigation found evidence that low doses of R-SFN promote MSCs proliferation and protect them from apoptosis and senescence, while higher doses have a cytotoxic effect, leading to the induction of cell cycle arrest, programmed cell death and senescence. The beneficial effects of R-SFN may be ascribed to its antioxidant properties, which were observed when MSC cultures were incubated with low doses of R-SFN. Its cytotoxic effects, which were observed after treating MSCs with high doses of R-SFN, could be attributed to its HDAC inhibitory activity. In summary, we found that R-SFN, like many other dietary supplements, exhibits a hormetic behavior; it is able to induce biologically opposite effects at different doses.

  • Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence: new perspective for Rett syndrome.

    Publication Date: 01/04/2012 on Molecular biology of the cell
    by Squillaro T, Alessio N, Cipollaro M, Melone MA, Hayek G, Renieri A, Giordano A, Galderisi U
    DOI: 10.1091/mbc.E11-09-0784

    MECP2 protein binds preferentially to methylated CpGs and regulates gene expression by causing changes in chromatin structure. The mechanism by which impaired MECP2 activity can induce pathological abnormalities in the nervous system of patients with Rett syndrome (RTT) is not clearly understood. To gain further insight into the role of MECP2 in human neurogenesis, we compared the neural differentiation process in mesenchymal stem cells (MSCs) obtained from a RTT patient and from healthy donors. We further analyzed neural differentiation in a human neuroblastoma cell line carrying a partially silenced MECP2 gene. Senescence and reduced expression of neural markers were observed in proliferating and differentiating MSCs from the RTT patient, which suggests that impaired activity of MECP2 protein may impair neural differentiation, as observed in RTT patients. Next, we used an inducible expression system to silence MECP2 in neuroblastoma cells before and after the induction of neural differentiation via retinoic acid treatment. This approach was used to test whether MECP2 inactivation affected the cell fate of neural progenitors and/or neuronal differentiation and maintenance. Overall, our data suggest that neural cell fate and neuronal maintenance may be perturbed by senescence triggered by impaired MECP2 activity either before or after neural differentiation.

  • Stem cell therapy for arterial restenosis: potential parameters contributing to the success of bone marrow-derived mesenchymal stromal cells.

    Publication Date: 01/02/2012 on Cardiovascular drugs and therapy
    by Forte A, Rinaldi B, Sodano L, Berrino L, Rossi F, Finicelli M, Grossi M, Cobellis G, Botti C, De Feo M, Santè P, Galderisi U, Cipollaro M
    DOI: 10.1007/s10557-011-6359-8

    Restenosis is a complex and heterogeneous pathophysiological phenomenon occurring in patients submitted to revascularization procedures. Previous studies proved the antirestenotic properties of injected allogenic mesenchymal stromal cells (MSCs) in an experimental model of rat carotid (re)stenosis induced through arteriotomy. In this study we describe some of the effects subsequent to MSC treatment of rats submitted to carotid arteriotomy and possibly responsible for their antirestenotic effect.

  • Chromatin modification and senescence.

    Publication Date: 01/01/2012 on Current pharmaceutical design
    by Di Bernardo G, Cipollaro M, Galderisi U

    Cells are the fundamental structure composing our bodies and hence cellular decline (called senescence) contributes to ageing. Endogenous and exogenous stresses may induce cellular senescence. Stressors are mainly macromolecule damage events, which include: shortening of chromosome telomeres; non-telomeric DNA damage; excessive mitogenic signals, which may cause DNA damage; and non-genotoxic stress, such as perturbations to chromatin organization. For many years the analysis of chromatin perturbation as a leading event in triggering senescence has been overlooked. Now, it is well recognized that chromatin DNA packaging is not immune to the ravages of time. All eukaryotes experience changes in chromatin organization and gene-expression patterns as they age. This can be due to perturbation in the function of chromatin modifiers. In this review we will discuss the role in the senescence process of the different types of chromatin modifiers, such as the ATP-dependent chromatin remodelling complexes, the enzymes that covalently modify histone tails and proteins involved in DNA methylation.