Latest PUBLICATIONS

  • Smenamides A and B, chlorinated peptide/polyketide hybrids containing a dolapyrrolidinone unit from the Caribbean sponge Smenospongia aurea. Evaluation of their role as leads in antitumor drug research.

    Publication Date: 08/11/2013, on Marine drugs
    by Teta R, Irollo E, Della Sala G, Pirozzi G, Mangoni A, Costantino V
    DOI: 10.3390/md11114451

    An in-depth study of the secondary metabolites contained in the Caribbean sponge Smenospongia aurea led to the isolation of smenamide A (1) and B (2), hybrid peptide/polyketide compounds containing a dolapyrrolidinone unit. Their structures were elucidated using high-resolution ESI-MS/MS and homo- and heteronuclear 2D NMR experiments. Structures of smenamides suggested that they are products of the cyanobacterial metabolism, and 16S rRNA metagenomic analysis detected Synechococcus spongiarum as the only cyanobacterium present in S. aurea. Smenamides showed potent cytotoxic activity at nanomolar levels on lung cancer Calu-1 cells, which for compound 1 is exerted through a clear pro-apoptotic mechanism. This makes smenamides promising leads for antitumor drug design.

  • Disrupted default mode network connectivity in migraine without aura.

    Publication Date: 08/11/2013, on The journal of headache and pain
    by Tessitore A, Russo A, Giordano A, Conte F, Corbo D, De Stefano M, Cirillo S, Cirillo M, Esposito F, Tedeschi G
    DOI: 10.1186/1129-2377-14-89

    Resting-state functional magnetic resonance imaging (RS-fMRI) has demonstrated disrupted default mode network (DMN) connectivity in a number of pain conditions, including migraine. However, the significance of altered resting-state brain functional connectivity in migraine is still unknown. The present study is aimed to explore DMN functional connectivity in patients with migraine without aura (MwoA) and investigate its clinical significance.

  • Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells.

    Publication Date: 07/11/2013, on Cell death & disease
    by Severino V, Alessio N, Farina A, Sandomenico A, Cipollaro M, Peluso G, Galderisi U, Chambery A
    DOI: 10.1038/cddis.2013.445

    Cellular senescence is the permanent arrest of cell cycle, physiologically related to aging and aging-associated diseases. Senescence is also recognized as a mechanism for limiting the regenerative potential of stem cells and to protect cells from cancer development. The senescence program is realized through autocrine/paracrine pathways based on the activation of a peculiar senescence-associated secretory phenotype (SASP). We show here that conditioned media (CM) of senescent mesenchymal stem cells (MSCs) contain a set of secreted factors that are able to induce a full senescence response in young cells. To delineate a hallmark of stem cells SASP, we have characterized the factors secreted by senescent MSC identifying insulin-like growth factor binding proteins 4 and 7 (IGFBP4 and IGFBP7) as key components needed for triggering senescence in young MSC. The pro-senescent effects of IGFBP4 and IGFBP7 are reversed by single or simultaneous immunodepletion of either proteins from senescent-CM. The blocking of IGFBP4/7 also reduces apoptosis and promotes cell growth, suggesting that they may have a pleiotropic effect on MSC biology. Furthermore, the simultaneous addition of rIGFBP4/7 increased senescence and induced apoptosis in young MSC. Collectively, these results suggest the occurrence of novel-secreted factors regulating MSC cellular senescence of potential importance for regenerative medicine and cancer therapy.

  • Impulse control disorders and cognitive dysfunctions in patients with Parkinson's disease.

    Publication Date: 01/11/2013, on Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
    by Santangelo G, Trojano L, Barone P, Grossi D, Vitale C
    DOI: 10.1007/s10072-013-1355-3

  • Stachydrine ameliorates high-glucose induced endothelial cell senescence and SIRT1 downregulation.

    Publication Date: 01/11/2013, on Journal of cellular biochemistry
    by Servillo L, D'Onofrio N, Longobardi L, Sirangelo I, Giovane A, Cautela D, Castaldo D, Giordano A, Balestrieri ML
    DOI: 10.1002/jcb.24598

    Hyperglycaemia, a characteristic feature of diabetes mellitus, induces endothelial dysfunction and vascular complications by accelerating endothelial cell (EC) senescence and limiting the proliferative potential of these cells. Here we aimed to investigate the effect of stachydrine, a proline betaine present in considerable quantities in juices from fruits of the Citrus genus, on EC under high-glucose stimulation, and its underlying mechanism. The senescence model of EC was set up by treating cells with high-glucose (30 mM) for different times. Dose-dependent (0.001-1 mM) evaluation of cell viability revealed that stachydrine does not affect cell proliferation with a similar trend up to 72 h. Noticeable, stachydrine (0.1 mM) significantly attenuated the high-glucose induced EC growth arrest and senescence. Indeed, co-treatment with high-glucose and stachydrine for 48 h kept the percentage of EC in the G0 /G1 cell cycle phase near to control values and significantly reduced cell senescence. Western blot analysis and confocal-laser scanning microscopy revealed that stachydrine also blocked the high-glucose induced upregulation of p16(INK4A) and downregulation of SIRT1 expression and enzyme activity. Taken together, results here presented are the first evidence that stachydrine, a naturally occurring compound abundant in citrus fruit juices, inhibits the deleterious effect of high-glucose on EC and acts through the modulation of SIRT1 pathway. These results may open new prospective in the identification of stachydrine as an important component of healthier eating patterns in prevention of cardiovascular diseases.

  • Secretome profiling of differentiated neural mes-c-myc A1 cell line endowed with stem cell properties.

    Publication Date: 01/11/2013, on Biochimica et biophysica acta
    by Severino V, Farina A, Colucci-D'Amato L, Reccia MG, Volpicelli F, Parente A, Chambery A
    DOI: 10.1016/j.bbapap.2012.12.005

    Neural stem cell proliferation and differentiation play a crucial role in the formation and wiring of neuronal connections forming neuronal circuits. During neural tissues development, a large diversity of neuronal phenotypes is produced from neural precursor cells. In recent years, the cellular and molecular mechanisms by which specific types of neurons are generated have been explored with the aim to elucidate the complex events leading to the generation of different phenotypes via distinctive developmental programs that control self-renewal, differentiation, and plasticity. The extracellular environment is thought to provide instructive influences that actively induce the production of specific neuronal phenotypes. In this work, the secretome profiling of differentiated neural mes-c-myc A1 (A1) cell line endowed with stem cell properties was analyzed by applying a shotgun LC-MS/MS approach. The results provide a list of secreted molecules with potential relevance for the functional and biological features characterizing the A1 neuronal phenotype. Proteins involved in biological processes closely related to nervous system development including neurites growth, differentiation of neurons and axonogenesis were identified. Among them, proteins belonging to extracellular matrix and cell-adhesion complexes as well as soluble factors with well established neurotrophic properties were detected. The presented work provides the basis to clarify the complex extracellular protein networks implicated in neuronal differentiation and in the acquisition of the neuronal phenotype. This article is part of a Special Issue entitled: An Updated Secretome.

  • Differential scanning calorimetry to investigate G-quadruplexes structural stability.

    Publication Date: 01/11/2013, on Methods (San Diego, Calif.)
    by Pagano B, Randazzo A, Fotticchia I, Novellino E, Petraccone L, Giancola C
    DOI: 10.1016/j.ymeth.2013.02.018

    Differential Scanning Calorimetry (DSC) is a straightforward methodology to characterize the energetics of thermally-induced transitions of DNA and other biological macromolecules. Therefore, DSC has been used to study the thermodynamic stability of several nucleic acids structures. G-quadruplexes are among the most important non-canonical nucleic acid architectures that are receiving great consideration. This article reports examples on the contribution of DSC to the knowledge of G-quadruplex structures. The selected case studies show the potential of this method in investigating the structure stability of G-quadruplex forming nucleic acids, and in providing information on their structural complexity. Indeed, DSC can determine thermodynamic parameters of G-quadruplex folding/unfolding processes, but it can also be useful to reveal the formation of multiple conformations or the presence of intermediate states along the unfolding pathway, and to evaluate the impact of chemical modifications on their structural stability. This article aims to show that DSC is an important complementary methodology to structural techniques, such as NMR and X-ray crystallography, in the study of G-quadruplex forming nucleic acids.

  • G-quadruplex unfolding in higher-order DNA structures.

    Publication Date: 21/10/2013, on Chemical communications (Cambridge, England)
    by Fotticchia I, Giancola C, Petraccone L
    DOI: 10.1039/c3cc44560g

    G-quadruplex unfolding within a sequence of two quadruplex units was characterized by gel electrophoresis, calorimetry and spectroscopy. The obtained results suggest that the kinetics and thermodynamics of the individual quadruplex unfolding are affected by its interaction with other DNA secondary structural elements.

  • Application of "magnetic tongue" to the sensory evaluation of extra virgin olive oil.

    Publication Date: 15/10/2013, on Food chemistry
    by Lauri I, Pagano B, Malmendal A, Sacchi R, Novellino E, Randazzo A
    DOI: 10.1016/j.foodchem.2012.10.135

    The perception of odour and flavour of foods is a complicated physiological and psychological process that cannot be explained by simple models. Unfortunately, taste is not objective, but partially subjective and it depends also on the mood of the taster. Generally, sensory analysis is used to describe sensory features. The availability of a number of instrumental techniques has opened up the possibility to calibrate the sensory perception. Here we have tested the potentiality of nuclear magnetic resonance spectroscopy as "magnetic tongue" to measure sensory descriptors in extra-virgin olive oil. We were able to correlate the NMR metabolomic fingerprints of extra-virgin olive oil to the sensory descriptors: tomato, bitter, pungent, rosemary, artichoke, sweet, grassy and leaf.

  • Translational control in the stress adaptive response of cancer cells: a novel role for the heat shock protein TRAP1.

    Publication Date: 10/10/2013, on Cell death & disease
    by Matassa DS, Amoroso MR, Agliarulo I, Maddalena F, Sisinni L, Paladino S, Romano S, Romano MF, Sagar V, Loreni F, Landriscina M, Esposito F
    DOI: 10.1038/cddis.2013.379

    TNF receptor-associated protein 1 (TRAP1), the main mitochondrial member of the heat shock protein (HSP) 90 family, is induced in most tumor types and is involved in the regulation of proteostasis in the mitochondria of tumor cells through the control of folding and stability of selective proteins, such as Cyclophilin D and Sorcin. Notably, we have recently demonstrated that TRAP1 also interacts with the regulatory protein particle TBP7 in the endoplasmic reticulum (ER), where it is involved in a further extra-mitochondrial quality control of nuclear-encoded mitochondrial proteins through the regulation of their ubiquitination/degradation. Here we show that TRAP1 is involved in the translational control of cancer cells through an attenuation of global protein synthesis, as evidenced by an inverse correlation between TRAP1 expression and ubiquitination/degradation of nascent stress-protective client proteins. This study demonstrates for the first time that TRAP1 is associated with ribosomes and with several translation factors in colon carcinoma cells and, remarkably, is found co-upregulated with some components of the translational apparatus (eIF4A, eIF4E, eEF1A and eEF1G) in human colorectal cancers, with potential new opportunities for therapeutic intervention in humans. Moreover, TRAP1 regulates the rate of protein synthesis through the eIF2α pathway either under basal conditions or under stress, favoring the activation of GCN2 and PERK kinases, with consequent phosphorylation of eIF2α and attenuation of cap-dependent translation. This enhances the synthesis of selective stress-responsive proteins, such as the transcription factor ATF4 and its downstream effectors BiP/Grp78, and the cystine antiporter system xCT, thereby providing protection against ER stress, oxidative damage and nutrient deprivation. Accordingly, TRAP1 silencing sensitizes cells to apoptosis induced by novel antitumoral drugs that inhibit cap-dependent translation, such as ribavirin or 4EGI-1, and reduces the ability of cells to migrate through the pores of transwell filters. These new findings target the TRAP1 network in the development of novel anti-cancer strategies.

  • Distinct disease phenotypes linked to different combinations of GAA mutations in a large late-onset GSDII sibship.

    Publication Date: 10/10/2013, on Orphanet journal of rare diseases
    by Sampaolo S, Esposito T, Farina O, Formicola D, Diodato D, Gianfrancesco F, Cipullo F, Cremone G, Cirillo M, Del Viscovo L, Toscano A, Angelini C, Di Iorio G
    DOI: 10.1186/1750-1172-8-159

    Glycogenosis type II (GSDII or Pompe disease) is an autosomal recessive disease, often characterized by a progressive accumulation of glycogen within lysosomes caused by a deficiency of α-1,4-glucosidase (GAA; acid maltase), a key enzyme of the glycogen degradation pathway. To date, more than 326 different mutations in the GAA gene have been identified in patients with GSDII but the course of the disease is difficult to be predicted on the basis of molecular genetic changes. Studies on large informative families are advisable to better define how genetics and non genetics factors like exercise and diet may influence the clinical phenotype.

  • Local inhibition of ornithine decarboxylase reduces vascular stenosis in a murine model of carotid injury.

    Publication Date: 09/10/2013, on International journal of cardiology
    by Forte A, Grossi M, Turczynska KM, Svedberg K, Rinaldi B, Donniacuo M, Holm A, Baldetorp B, Vicchio M, De Feo M, Santè P, Galderisi U, Berrino L, Rossi F, Hellstrand P, Nilsson BO, Cipollaro M
    DOI: 10.1016/j.ijcard.2013.04.153

    Polyamines are organic polycations playing an essential role in cell proliferation and differentiation, as well as in cell contractility, migration and apoptosis. These processes are known to contribute to restenosis, a pathophysiological process often occurring in patients submitted to revascularization procedures. We aimed to test the effect of α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, on vascular cell pathophysiology in vitro and in a rat model of carotid arteriotomy-induced (re)stenosis.

  • Determination of homoarginine, arginine, NMMA, ADMA, and SDMA in biological samples by HPLC-ESI-mass spectrometry.

    Publication Date: 09/10/2013, on International journal of molecular sciences
    by Servillo L, Giovane A, D'Onofrio N, Casale R, Cautela D, Castaldo D, Balestrieri ML
    DOI: 10.3390/ijms141020131

    N(G),N(G)-dimethyl-L-arginine (ADMA) and N(G)-methyl-L-arginine (NMMA) are endogenous inhibitors of nitric oxide synthase (NOS). In contrast, N(G),N'(G)-dimethyl-L-arginine (SDMA) possesses only a weak inhibitory potency towards neuronal NOS and it is known to limit nitric oxide (NO) production by competing with L-arginine for cellular uptake. The inhibition of NOS is associated with endothelial dysfunction in cardiovascular diseases as well in chronic renal failure. L-homoarginine (HArg), a structural analog of L-arginine (Arg), is an alternative but less efficient substrate for NOS. Besides, it inhibits arginase, leading to an increased availability of L-arginine for NOS to produce NO. However, its relation with cardiovascular disease remains unclear. To date, several analytical methods for the quantitative determination of Arg, HArg, NMMA, AMDA, and SDMA in biological samples have been described. Here, we present a simple, fast, and accurate HPLC-ESI-MS/MS method which allows both the simultaneous determination and quantification of these compounds without needing derivatization, and the possibility to easily modulate the chromatographic separation between HArg and NMMA (or between SDMA and ADMA). Data on biological samples revealed the feasibility of the method, the minimal sample preparation, and the fast run time which make this method very suitable and accurate for analysis in the basic and clinical settings.

  • Peri-procedural tight glycemic control during early percutaneous coronary intervention up-regulates endothelial progenitor cell level and differentiation during acute ST-elevation myocardial infarction: effects on myocardial salvage.

    Publication Date: 09/10/2013, on International journal of cardiology
    by Marfella R, Rizzo MR, Siniscalchi M, Paolisso P, Barbieri M, Sardu C, Savinelli A, Angelico N, Del Gaudio S, Esposito N, Rambaldi PF, D'Onofrio N, Mansi L, Mauro C, Paolisso G, Balestrieri ML
    DOI: 10.1016/j.ijcard.2013.06.053

    We examined the effects of peri-procedural intensive glycemic control during early percutaneous coronary intervention (PCI) on the number and differentiation of endothelial progenitor cells (EPCs) and myocardial salvage (MS) in hyperglycemic patients with first ST-elevation myocardial infarction (STEMI).

  • Investigating the ruthenium metalation of proteins: X-ray structure and Raman microspectroscopy of the complex between RNase A and AziRu.

    Publication Date: 07/10/2013, on Inorganic chemistry
    by Vergara A, Russo Krauss I, Montesarchio D, Paduano L, Merlino A
    DOI: 10.1021/ic401494v

    A Raman-assisted crystallographic study on the adduct between AziRu, a Ru(III) complex with high antiproliferative activity, and RNase A is presented. The protein structure is not perturbed significantly by the Ru label. The metal coordinates to ND atoms of His105 or of His119 imidazole rings, losing all of its original ligands but retaining octahedral, although distorted, coordination geometry. The AziRu binding inactivates the enzyme, suggesting that its antitumor action can be exerted by a mechanism of competitive inhibition.