Latest PUBLICATIONS
-
Lack of evidence for a role of genetic variation in TMEM230 in the risk for Parkinson's disease in the Caucasian population.
Publication Date: 01/02/2017, on Neurobiology of aging
by Giri A, Mok KY, Jansen I, Sharma M, Tesson C, Mangone G, Lesage S, Bras JM, Shulman JM, Sheerin UM, , Díez-Fairen M, Pastor P, Martí MJ, Ezquerra M, Tolosa E, Correia-Guedes L, Ferreira J, Amin N, van Duijn CM, van Rooij J, Uitterlinden AG, Kraaij R, Nalls M, Simón-Sánchez J
DOI: 10.1016/j.neurobiolaging.2016.10.004
Mutations in TMEM230 have recently been associated to Parkinson's disease (PD). To further understand the role of this gene in the Caucasian population, we interrogated our large repository of next generation sequencing data from unrelated PD cases and controls, as well as multiplex families with autosomal dominant PD. We identified 2 heterozygous missense variants in 2 unrelated PD cases and not in our control database (p.Y106H and p.I162V), and a heterozygous missense variant in 2 PD cases from the same family (p.A163T). However, data presented herein is not sufficient to support the role of any of these variants in PD pathology. A series of unified sequence kernel association tests also failed to show a cumulative effect of rare variation in this gene on the risk of PD in the general Caucasian population. Further evaluation of genetic data from different populations is needed to understand the genetic role of TMEM230 in PD etiology.
-
Cutaneous features of myotonic dystrophy types 1 and 2: Implication of premature aging and vitamin D homeostasis.
Publication Date: 01/02/2017, on Neuromuscular disorders : NMD
by Campione E, Botta A, Di Prete M, Rastelli E, Gibellini M, Petrucci A, Bernardini S, Novelli G, Bianchi L, Orlandi A, Massa R, Terracciano C
DOI: 10.1016/j.nmd.2016.11.004
Skin changes have been described in myotonic dystrophy type 1 (DM1). However, whether and in which way skin is a target of specific disease alterations in DM1 and DM2 has not been yet clarified. This study aims to explore cutaneous features of DM1 and DM2 patients. Skin examination was performed in 60 DM1, 15 DM2, and 103 control, unselected patients by means of dermoscopy. It revealed quantitative and qualitative abnormalities of nevi and typical signs of premature aging in both DM1 and DM2 patients, with a significantly higher frequency of dysplastic nevi, alopecia, xerosis and seborrheic dermatitis. Twenty-eight nevi were excised in DM patients and none showed histological features of melanoma, although 12 of them were diagnosed as dysplastic and the remaining 16 presented histological irregularity in melanin distribution. In DM1 patients, the number of nevi correlated with CTG expansion size, whereas the presence of dysplastic nevi and xerosis inversely correlated with vitamin D levels. DM1 and DM2 patients display a high frequency of skin abnormalities, the most common of which correlate with genotype severity and serum vitamin D levels. Skin examination is highly informative in these patients and reveals features suggestive of premature aging and impaired vitamin D homeostasis.
-
Assessment of apathy independent of physical disability: validation of the Dimensional Apathy Scale in Italian healthy sample.
Publication Date: 01/02/2017, on Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
by Santangelo G, Raimo S, Siciliano M, D'Iorio A, Piscopo F, Cuoco S, Bottone M, Trojsi F, Grossi D, Trojano L
DOI: 10.1007/s10072-016-2766-8
Apathy is well described in neurodegenerative diseases characterized by motor disability; therefore, assessment of apathy avoiding possible confounding effects of motor impairments is necessary in neurological diseases. Recently, the Dimensional Apathy Scale (DAS) was developed to assess apathy as multifaceted construct, independent of physical disability. We developed the Italian version of the Dimensional Apathy Scale (I-DAS) and explored its psychometric properties in a sample of 309 healthy individuals. Participants also completed Apathy Evaluation Scale, Beck Depression Inventory-II and Addenbrooke's Cognitive Examination-Revised. The I-DAS showed high internal consistency, good convergent and divergent validity. The I-DAS had a three-factor structure, such as the original scale. The I-DAS scored was significantly correlated with individuals' education, but not with age or gender. We, therefore, computed correction factor for education and provided percentile distribution of the adjusted scores to identify individuals with high levels of apathy. The I-DAS showed good psychometric properties and can be a valid and reliable tool to assess multidimensional apathy.
-
Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons.
Publication Date: 25/01/2017, on Journal of neurochemistry
by Speranza L, Labus J, Volpicelli F, Guseva D, Lacivita E, Leopoldo M, Bellenchi GC, di Porzio U, Bijata M, Perrone-Capano C, Ponimaskin E
DOI: 10.1111/jnc.13962
Precise control of dendritic spine density and synapse formation is critical for normal and pathological brain functions. Therefore, signaling pathways influencing dendrite outgrowth and remodeling remain a subject of extensive investigations. Here, we report that prolonged activation of the serotonin 5-HT7 receptor (5-HT7R) with selective agonist LP-211 promotes formation of dendritic spines and facilitates synaptogenesis in postnatal cortical and striatal neurons. Critical role of 5-HT7R in neuronal morphogenesis was confirmed by analysis of neurons isolated from 5-HT7R-deficient mice and by pharmacological inactivation of the receptor. Acute activation of 5-HT7R results in pronounced neurite elongation in postnatal striatal and cortical neurons, thus extending previous data on the morphogenic role of 5-HT7R in embryonic and hippocampal neurons. We also observed decreased number of spines in neurons with either genetically (i.e. 5-HT7R-knock-out) or pharmacologically (i.e. antagonist treatment) blocked 5-HT7R, suggesting that constitutive 5-HT7R activity is critically involved in the spinogenesis. Moreover, cyclin-dependent kinase 5 and small GTPase Cdc42 were identified as important downstream effectors mediating morphogenic effects of 5-HT7R in neurons. Altogether, our data suggest that the 5-HT7R-mediated structural reorganization during the postnatal development might have a crucial role for the development and plasticity of forebrain areas such as cortex and striatum, and thereby can be implicated in regulation of the higher cognitive functions. Read the Editorial Highlight for this article on doi: 10.1111/jnc.13981.
-
Tandem application of ligand-based virtual screening and G4-OAS assay to identify novel G-quadruplex-targeting chemotypes.
Publication Date: 24/01/2017, on Biochimica et biophysica acta
by Musumeci D, Amato J, Zizza P, Platella C, Cosconati S, Cingolani C, Biroccio A, Novellino E, Randazzo A, Giancola C, Pagano B, Montesarchio D
DOI: 10.1016/j.bbagen.2017.01.024
G-quadruplex (G4) structures are key elements in the regulation of cancer cell proliferation and their targeting is deemed to be a promising strategy in anticancer therapy.
-
Gender differences in cognitive Theory of Mind revealed by transcranial direct current stimulation on medial prefrontal cortex.
Publication Date: 24/01/2017, on Scientific reports
by Adenzato M, Brambilla M, Manenti R, De Lucia L, Trojano L, Garofalo S, Enrici I, Cotelli M
DOI: 10.1038/srep41219
Gender differences in social cognition are a long discussed issue, in particular those concerning Theory of Mind (ToM), i.e., the ability to explain and predict other people's mental states. The aim of this randomized, double-blind, placebo-controlled study was to test the hypothesis that anodal tDCS over the medial prefrontal cortex (mPFC) selectively enhances cognitive ToM performance in females. In the first experiment we administered to sixteen females and sixteen males a cognitive ToM task during anodal or placebo tDCS over the mPFC. In the second experiment further sixteen females completed the task receiving anodal or placebo tDCS over the vertex. The results showed that anodal tDCS over the mPFC enhances ToM in females but not in males, an effect indicated by enhanced ToM in females that received anodal tDCS over the mPFC compared with females that received tDCS over the vertex. These findings are relevant for three reasons. First, we found evidence of gender-related differences in cognitive ToM, extending previous findings concerning affective ToM. Second, these differences emerge with anodal stimulation of the mPFC, confirming the crucial role of this area in cognitive ToM. Third, we show that taking into account gender-related differences is mandatory for the investigation of ToM.
-
Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes.
Publication Date: 18/01/2017, on Journal of cellular physiology
by Squillaro T, Antonucci I, Alessio N, Esposito A, Cipollaro M, Melone MA, Peluso G, Stuppia L, Galderisi U
DOI: 10.1002/jcp.25807
Lysosomal storage disorders (LDS) comprise a group of rare multisystemic diseases resulting from inherited gene mutations that impair lysosomal homeostasis. The most common LSDs, Gaucher disease (GD), and Fabry disease (FD) are caused by deficiencies in the lysosomal glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes, respectively. Given the systemic nature of enzyme deficiency, we hypothesized that the stem cell compartment of GD and FD patients might be also affected. Among stem cells, mesenchymal stem cells (MSCs) are a commonly investigated population given their role in hematopoiesis and the homeostatic maintenance of many organs and tissues. Since the impairment of MSC functions could pose profound consequences on body physiology, we evaluated whether GBA and GLA silencing could affect the biology of MSCs isolated from bone marrow and amniotic fluid. Those cell populations were chosen given the former's key role in organ physiology and the latter's intriguing potential as an alternative stem cell model for human genetic disease. Our results revealed that GBA and GLA deficiencies prompted cell cycle arrest along with the impairment of autophagic flux and an increase of apoptotic and senescent cell percentages. Moreover, an increase in ataxia-telangiectasia-mutated staining 1 hr after oxidative stress induction and a return to basal level at 48 hr, along with persistent gamma-H2AX staining, indicated that MSCs properly activated DNA repair signaling, though some damages remained unrepaired. Our data therefore suggest that MSCs with reduced GBA or GLA activity are prone to apoptosis and senescence due to impaired autophagy and DNA repair capacity.
-
VRT (verbal reasoning test): a new test for assessment of verbal reasoning. Test realization and Italian normative data from a multicentric study.
Publication Date: 17/01/2017, on Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
by Basagni B, Luzzatti C, Navarrete E, Caputo M, Scrocco G, Damora A, Giunchi L, Gemignani P, Caiazzo A, Gambini MG, Avesani R, Mancuso M, Trojano L, De Tanti A
DOI: 10.1007/s10072-017-2817-9
Verbal reasoning is a complex, multicomponent function, which involves activation of functional processes and neural circuits distributed in both brain hemispheres. Thus, this ability is often impaired after brain injury. The aim of the present study is to describe the construction of a new verbal reasoning test (VRT) for patients with brain injury and to provide normative values in a sample of healthy Italian participants. Three hundred and eighty healthy Italian subjects (193 women and 187 men) of different ages (range 16-75 years) and educational level (primary school to postgraduate degree) underwent the VRT. VRT is composed of seven subtests, investigating seven different domains. Multiple linear regression analysis revealed a significant effect of age and education on the participants' performance in terms of both VRT total score and all seven subtest scores. No gender effect was found. A correction grid for raw scores was built from the linear equation derived from the scores. Inferential cut-off scores were estimated using a non-parametric technique, and equivalent scores were computed. We also provided a grid for the correction of results by z scores.
-
Exploring visuospatial abilities and their contribution to constructional abilities and nonverbal intelligence.
Publication Date: 09/01/2017, on Applied neuropsychology. Adult
by Trojano L, Siciliano M, Cristinzio C, Grossi D
DOI: 10.1080/23279095.2016.1269009
The present study aimed at exploring relationships among the visuospatial tasks included in the Battery for Visuospatial Abilities (BVA), and at assessing the relative contribution of different facets of visuospatial processing on tests tapping constructional abilities and nonverbal abstract reasoning. One hundred forty-four healthy subjects with a normal score on Mini Mental State Examination completed the BVA plus Raven's Coloured Progressive Matrices and Constructional Apraxia test. We used Principal Axis Factoring and Parallel Analysis to investigate relationships among the BVA visuospatial tasks, and performed regression analyses to assess the visuospatial contribution to constructional abilities and nonverbal abstract reasoning. Principal Axis Factoring and Parallel Analysis revealed two eigenvalues exceeding 1, accounting for about 60% of the variance. A 2-factor model provided the best fit. Factor 1 included sub-tests exploring "complex" visuospatial skills, whereas Factor 2 included two subtests tapping "simple" visuospatial skills. Regression analyses revealed that both Factor 1 and Factor 2 significantly affected performance on Raven's Coloured Progressive Matrices, whereas only the Factor 1 affected performance on Constructional Apraxia test. Our results supported functional segregation proposed by De Renzi, suggesting clinical caution to utilize a single test to assess visuospatial domain, and qualified the visuospatial contribution in drawing and non-verbal intelligence test.
-
The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation.
Publication Date: 02/01/2017, on Cell cycle (Georgetown, Tex.)
by Alessio N, Özcan S, Tatsumi K, Murat A, Peluso G, Dezawa M, Galderisi U
DOI: 10.1080/15384101.2016.1211215
Mesenchymal stromal cells (MSCs) are a heterogeneous population, which contain several cell phenotypes: mesenchymal stem cells, progenitor cells, fibroblasts and other type of cells. Previously, we identified unique stem cells that we named multilineage-differentiating stress enduring (Muse) cells as one to several percent of MSCs of the bone marrow, adipose tissue and dermis. Among different cell populations in MSCs, Muse cells, positive for pluripotent surface marker SSEA-3, may represent cells responsible for pluripotent-like property of MSCs, since they express pluripotency genes, able to differentiated into triploblastic cells from a single cells and are self-renewable. MSCs release biologically active factors that have profound effects on local cellular dynamics. A thorough examination of MSC secretome seems essential for understanding the physiological functions exerted by these cells in our organism and also for rational cellular therapy design. In this setting, studies on secretome of Muse cells may shed light on pathways that are associated with their specific features. Our findings evidenced that secretomes of MSCs and Muse cells contain factors that regulate extracellular matrix remodeling, ox-redox activities and immune system. Muse cells appear to secrete factors that may preserve their stem cell features, allow survival under stress conditions and may contribute to their immunomodulation capacity. In detail, the proteins belonging to protein kinase A signaling, FXR/RXR activation and LXR/RXR activation pathways may play a role in regulation of Muse stem cell features. These last 2 pathways together with proteins associated with antigen presentation pathway and coagulation system may play a role in immunomodulation.
-
Tracking the evolution of epialleles during neural differentiation and brain development: D-Aspartate oxidase as a model gene.
Publication Date: 02/01/2017, on Epigenetics
by Florio E, Keller S, Coretti L, Affinito O, Scala G, Errico F, Fico A, Boscia F, Sisalli MJ, Reccia MG, Miele G, Monticelli A, Scorziello A, Lembo F, Colucci-D'Amato L, Minchiotti G, Avvedimento VE, Usiello A, Cocozza S, Chiariotti L
DOI: 10.1080/15592294.2016.1260211
We performed ultra-deep methylation analysis at single molecule level of the promoter region of developmentally regulated D-Aspartate oxidase (Ddo), as a model gene, during brain development and embryonic stem cell neural differentiation. Single molecule methylation analysis enabled us to establish the effective epiallele composition within mixed or pure brain cell populations. In this framework, an epiallele is defined as a specific combination of methylated CpG within Ddo locus and can represent the epigenetic haplotype revealing a cell-to-cell methylation heterogeneity. Using this approach, we found a high degree of polymorphism of methylated alleles (epipolymorphism) evolving in a remarkably conserved fashion during brain development. The different sets of epialleles mark stage, brain areas, and cell type and unravel the possible role of specific CpGs in favoring or inhibiting local methylation. Undifferentiated embryonic stem cells showed non-organized distribution of epialleles that apparently originated by stochastic methylation events on individual CpGs. Upon neural differentiation, despite detecting no changes in average methylation, we observed that the epiallele distribution was profoundly different, gradually shifting toward organized patterns specific to the glial or neuronal cell types. Our findings provide a deep view of gene methylation heterogeneity in brain cell populations promising to furnish innovative ways to unravel mechanisms underlying methylation patterns generation and alteration in brain diseases.
-
A cluster of progranulin C157KfsX97 mutations in Southern Italy: clinical characterization and genetic correlations.
Publication Date: 01/01/2017, on Neurobiology of aging
by Coppola C, Saracino D, Puoti G, Lus G, Dato C, Le Ber I, Pariente J, Caroppo P, Piccoli E, Tagliavini F, Di Iorio G, Rossi G
DOI: 10.1016/j.neurobiolaging.2016.10.008
Frontotemporal lobar degeneration (FTLD) is a group of neurodegenerative diseases displaying high clinical, pathologic, and genetic heterogeneity. Several autosomal dominant progranulin (GRN) mutations have been reported, accounting for 5%-10% of FTLD cases worldwide. In this study, we described the clinical characteristics of 7 Italian patients, 5 with a diagnosis of frontotemporal dementia behavioral variant and 2 of corticobasal syndrome (CBS), carrying the GRN deletion g.101349_101355delCTGCTGT, resulting in the C157KfsX97 null mutation, and hypothesized the existence of a founder effect by means of haplotype sharing analysis. We performed plasma progranulin dosage, GRN gene sequencing, and haplotype sharing study, analyzing 10 short tandem repeat markers, spanning a region of 11.08 Mb flanking GRN on chromosome 17q21. We observed shared alleles among 6 patients for 8 consecutive short tandem repeat markers spanning a 7.29 Mb region. Therefore, also with this particular mutation, the elevated clinical variability described among GRN-mutated FTLD cases is confirmed. Moreover, this is the first study reporting the likely existence of a founder effect for C157KfsX97 mutation in Southern Italy.
-
The level of 24-Hydroxycholesteryl Esters is an Early Marker of Alzheimer's Disease.
Publication Date: 01/01/2017, on Journal of Alzheimer's disease : JAD
by Benussi L, Ghidoni R, Dal Piaz F, Binetti G, Di Iorio G, Abrescia P
DOI: 10.3233/JAD-160930
Cholesterol (C) brain accumulation seems to play a role in the Alzheimer's disease (AD) pathogenesis. 24(S)-hydroxycholesterol (24OH-C) is the predominant metabolite of brain C and its synthesis is believed to represent a way to remove excess C from neurons. Previous studies showed that 24OH-C level is altered in patients with neurodegenerative diseases, including AD. Only one study demonstrated that 24OH-C esterification is altered in neurodegenerative diseases, i.e., amyotrophic lateral sclerosis. Herein we analyzed the level of 24OH-C esters (% 24OH-CE) in i) cerebrospinal fluid (CSF) and homologous serum of AD (n = 13) and controls (n = 8); ii) plasma from AD (n = 30), controls (n = 30), mild cognitive impairment (MCI) converting to AD (n = 34), and stable MCI (n = 40). The % 24OH-CE in CSF positively correlated with that in homologous serum and was lower in both CSF and blood from AD patients as compared to controls; moreover, the plasma value of % 24OH-CE was lower in MCI conv-AD than in non-converters. Kaplan Meier Survival curves revealed a significant anticipation of the disease onset in AD and MCI conv-AD subjects with the lowest % 24OH-CE values. In conclusion, the reduction of % 24OH-CE in AD and MCI conv-AD, as well as the anticipation of the disease in patients with the lowest % 24OH-CE, support a role of the cholesterol/lecithin-cholesterol acyltransferase axis in AD onset/progression. Thus, targeting brain cholesterol metabolism could be a valuable strategy to prevent AD associated cognitive decline.
-
Medicinal Herbs and Their Active Compounds for Fatty Liver Diseases.
Publication Date: 01/01/2017, on Evidence-based complementary and alternative medicine : eCAM
by Son CG, Wei Z, Raghavendran HB, Wang JH, Janda E
DOI: 10.1155/2017/3612478
-
Raman Spectrometric Detection Methods for Early and Non-Invasive Diagnosis of Alzheimer's Disease.
Publication Date: 01/01/2017, on Journal of Alzheimer's disease : JAD
by Huang CC, Isidoro C
DOI: 10.3233/JAD-161238
The continuous increasing rate of patients suffering of Alzheimer's disease (AD) worldwide requires the adoption of novel techniques for non-invasive early diagnosis and monitoring of the disease. Here we review the various Raman spectroscopic techniques, including Fourier Transform-Raman spectroscopy, surface-enhanced Raman scattering spectroscopy, coherent anti-Stokes Raman scattering spectroscopy, and confocal Raman microspectroscopy, that could be used for the diagnosis of AD. These techniques have shown the potential to detect AD biomarkers, such as the amyloid-β peptide and the tau protein, or the neurotransmitters involved in the disease (e.g., Glutamate and γ-Aminobutyric acid), or the typical structural alterations in specific brain areas. The possibility to detect the specific biomarkers in liquid biopsies and to obtain high resolution 3D microscope images of the affected area make the Raman spectroscopy a valuable ally in the early diagnosis and monitoring of AD.