Teresa Esposito

PhD student of Dietology

Name Teresa
Surname Esposito
Institution Università degli Studi della Campania Luigi Vanvitelli
E-Mail teresa.esposito@unicampania.it
Address Institute of Genetics and Biophysics "Adriano Buzzati-Traverso"
Teresa Esposito

Member PUBLICATIONS

  • Successful long-term therapy with flecainide in a family with paramyotonia congenita.

    Publication Date: 27/02/2018 on Journal of neurology, neurosurgery, and psychiatry
    by Terracciano C, Farina O, Esposito T, Lombardi L, Napolitano F, De Blasiis P, Ciccone G, Todisco V, Tuccillo F, Bernardini S, Di Iorio G, Melone MAB, Sampaolo S
    DOI: 10.1136/jnnp-2017-317615
  • Effects of different extracts of curcumin on TPC1 papillary thyroid cancer cell line.

    Publication Date: 15/02/2018 on BMC complementary and alternative medicine
    by Perna A, De Luca A, Adelfi L, Pasquale T, Varriale B, Esposito T
    DOI: 10.1186/s12906-018-2125-9

    The thyroid gland is one of the largest endocrine glands in the body. The vast majority of TCs (> 90%) originate from follicular cells and are defined as differentiated thyroid cancers (DTC) and the two histological subtypes are the papillary TC with its variants and the follicular TC. Curcumin possesses a wide variety of biological functions, and thanks to its properties, it has gained considerable attention due to its profound medicinal values (Prasad, Gupta, Tyagi, and Aggarwal, Biotechnol Adv 32:1053-1064, 2014). We have undertaken the present work in order to define the possible role of curcumin in modulating the genetic expression of cell markers and to understand the effectiveness of this nutraceutical in modulating the regression of cancer phenotype.

  • Autosomal dominant myopia associated to a novel P4HA2 missense variant and defective collagen hydroxylation.

    Publication Date: 24/01/2018 on Clinical genetics
    by Napolitano F, Di Iorio V, Testa F, Tirozzi A, Reccia MG, Lombardi L, Farina O, Simonelli F, Gianfrancesco F, Di Iorio G, Melone MAB, Esposito T, Sampaolo S
    DOI: 10.1111/cge.13217

    We recently described a complex multisystem syndrome in which mild-moderate myopia segregated as an independent trait. A plethora of genes has been related to sporadic and familial myopia. More recently, in Chinese patients severe myopia (MYP25, OMIM:617238) has been linked to mutations in P4HA2 gene. Seven family members complaining of reduced distance vision especially at dusk underwent complete ophthalmological examination. Whole exome sequencing was performed to identify the gene responsible for myopia in the pedigree. Moderate myopia was diagnosed in the family which was associated to the novel missense variant c.1147A>G p.(Lys383Glu) in the prolyl 4-hydroxylase,alpha-polypeptide 2 (P4HA2) gene, which catalyzes the formation of 4-hydroxyproline residues in the collagen strands. In vitro studies demonstrated P4HA2 mRNA and protein reduced expression level as well as decreased collagen hydroxylation and deposition in mutated fibroblast primary cultures compared to healthy cell lines. This study suggests that P4HA2 mutations may lead to myopic axial elongation of eyeball as a consequence of quantitative and structural alterations of collagen. This is the first confirmatory study which associates a novel dominant missense variant in P4HA2 with myopia in Caucasian patients. Further studies in larger cohorts are advisable to fully clarify genotype-phenotype correlations.

  • Vacuolated PAS-positive lymphocytes as an hallmark of Pompe disease and other myopathies related to impaired autophagy.

    Publication Date: 07/12/2017 on Journal of cellular physiology
    by Pascarella A, Terracciano C, Farina O, Lombardi L, Esposito T, Napolitano F, Franzese G, Panella G, Tuccillo F, la Marca G, Bernardini S, Boffo S, Giordano A, Melone MAB, Di Iorio G, Sampaolo S
    DOI: 10.1002/jcp.26365

    Autosomal recessive Pompe disease is a lysosomal disorder caused by mutations of the acid-α-glucosidase (GAA) gene. Deficiency of GAA enzyme leads to glycogen accumulation and autophagy impairment in cardiac and skeletal muscles, but also in lymphocytes. Since an effective therapy is available, a rapid, sensitive and specific test is crucial to early identify affected subjects. Number of lymphocytes containing PAS-positive vacuoles was evaluated on blood films from 72 consecutive adult patients with hyperckemia and/or muscle weakness, 13 genetically confirmed late-onset-Pompe-disease (LOPD) and 13 of their offspring. GAA activity, measured on dried blood spot (DBS) in all patients inversely correlated with number of PAS-positive lymphocytes. More than 4 PAS-positive lymphocytes were found in 11 out of the 72 patients (6 new diagnosis of LOPD, 3 different glycogen storage myopathies, 1 glucose-6-phosphate dehydrogenase deficiency, 1 caveolinopathy), in all 13 LOPD patients and in the 13 LOPD offspring. These latter resulted to have all a single GAA mutation but low GAA levels. Immunostaining with the autophagy markers LC3 and p62 confirmed the autophagic nature of lymphocytes vacuoles. ROC curve assessment of PAS-positive lymphocytes disclosed 100% of sensitivity and 94% of specificity in recognizing both compound heterozygous and heterozygous GAA carriers. The other myopathies with more than 4 PAS-positive lymphocytes appeared to be all related to impaired autophagy, which seems to be responsible of PAS-positive vacuolated lymphocytes formation. Quantification of PAS-positive lymphocytes in blood films is useful to identify autophagic vacuolar myopathies and should be routinely used as first level test for Pompe disease. This article is protected by copyright. All rights reserved.

  • Identification of the first dominant mutation of LAMA5 gene causing a complex multisystem syndrome due to dysfunction of the extracellular matrix.

    Publication Date: 01/10/2017 on Journal of medical genetics
    by Sampaolo S, Napolitano F, Tirozzi A, Reccia MG, Lombardi L, Farina O, Barra A, Cirillo F, Melone MAB, Gianfrancesco F, Iorio GD, Esposito T
    DOI: 10.1136/jmedgenet-2017-104555

    The laminin alpha 5 gene (LAMA5) plays a master role in the maintenance and function of the extracellular matrix (ECM) in mammalian tissues, which is critical in developmental patterning, stem cell niches, cancer and genetic diseases. Its mutations have never been reported in human disease so far. The aim of this study was to associate the first mutation in LAMA5 gene to a novel multisystem syndrome.

  • First study on the peptidergic innervation of the brain superior sagittal sinus in humans.

    Publication Date: 24/04/2017 on Neuropeptides
    by Sampaolo S, Liguori G, Vittoria A, Napolitano F, Lombardi L, Figols J, Melone MAB, Esposito T, Di Iorio G
    DOI: 10.1016/j.npep.2017.04.008

    The superior sagittal sinus (SSS) of the mammalian brain is a pain-sensitive intracranial vessel thought to play a role in the pathogenesis of migraine headaches. Here, we aimed to investigate the presence and the potential co-localization of some neurotransmitters in the human SSS. Immunohistochemical and double-labeling immunofluorescence analyses were applied to paraformaldehyde-fixed, paraffin-embedded, coronal sections of the SSS. Protein extraction and Western blotting technique were performed on the same material to confirm the morphological data. Our results showed nerve fibers clustered mainly in large bundles tracking parallel to the longitudinal axis of the sinus, close in proximity to the vascular endothelium. Smaller fascicles of fibers encircled the vascular lumen in a spiral fashion, extending through the subendothelial connective tissue. Isolated nerve fibers were observed around the openings of bridging veins in the sinus or around small vessels extending into the perisinusal dura. The neurotransmitters calcitonin gene related peptide (CGRP), substance P (SP), neuronal nitric oxide synthase (nNOS), vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH), and neuropeptide Y (NPY) were found in parietal nerve structures, distributed all along the length of the SSS. Overall, CGRP- and TH-containing nerve fibers were the most abundant. Neurotransmitters co-localized in the same fibers in the following pairs: CGRP/SP, CGRP/NOS, CGRP/VIP, and TH/NPY. Western blotting analysis confirmed the presence of such neurosubstances in the SSS wall. Overall our data provide the first evidence of the presence and co-localization of critical neurotransmitters in the SSS of the human brain, thus contributing to a better understanding of the sinus functional role.

  • Effects of low-carbohydrate diet therapy in overweight subjects with autoimmune thyroiditis: possible synergism with ChREBP.

    Publication Date: 14/09/2016 on Drug design, development and therapy
    by Esposito T, Lobaccaro JM, Esposito MG, Monda V, Messina A, Paolisso G, Varriale B, Monda M, Messina G
    DOI: 10.2147/DDDT.S106440

    The thyroid is one of the metabolism regulating glands. Its function is to determine the amount of calories that the body has to burn to maintain normal weight. Thyroiditides are inflammatory processes that mainly result in autoimmune diseases. We have conducted the present study in order to have a clear picture of both autoimmune status and the control of body weight. We have evaluated the amount of either thyroid hormones, or antithyroid, or anti-microsomal, or anti-peroxidase antibodies (Abs) in patients with high amounts of Abs. In a diet devoid of carbohydrates (bread, pasta, fruit, and rice), free from goitrogenic food, and based on body mass index, the distribution of body mass and intracellular and extracellular water conducted for 3 weeks gives the following results: patients treated as above showed a significant reduction of antithyroid (-40%, P<0.013), anti-microsomal (-57%, P<0.003), and anti-peroxidase (-44%, P<0,029) Abs. Untreated patients had a significant increase in antithyroid (+9%, P<0.017) and anti-microsomal (+30%, P<0.028) Abs. Even the level of anti-peroxidase Abs increased without reaching statistical significance (+16%, P>0064). With regard to the body parameters measured in patients who followed this diet, reduction in body weight (-5%, P<0.000) and body mass index (-4%, P<0.000) were observed. Since 83% of patients with high levels of autoantibodies are breath test positive to lactase with a lactase deficit higher than 50%, this fact led us to hypothesize a correlation with carbohydrate-responsive element-binding protein and therefore a possible role of carbohydrate metabolism in the development and maintenance of autoimmune thyroiditis associated with body weight increase and slower basic metabolism.

  • A novel diagnostic method to detect truncated neurofibromin in neurofibromatosis 1.

    Publication Date: 01/12/2015 on Journal of neurochemistry
    by Esposito T, Piluso G, Saracino D, Uccello R, Schettino C, Dato C, Capaldo G, Giugliano T, Varriale B, Paolisso G, Di Iorio G, Melone MA
    DOI: 10.1111/jnc.13396

    Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic condition caused by dominant loss-of-function mutations of the tumor suppressor gene NF1 that encodes neurofibromin, a negative regulator of RAS activity. Mutation analysis of NF1 located at 17q11.2 has been hampered by the large size of the gene, the high rate of new mutations, the lack of mutational clustering, and the presence of several homologous loci. To date, about 80% of the reported NF1 mutations are predicted to result in protein truncation, but very few studies have correlated the causative NF1 mutation with its effect at the protein level. We evaluated a novel diagnostic method to detect truncated forms of neurofibromin in a large cohort of unrelated subjects suspected of having NF1, according to the NIH consensus criteria. Western blot analysis was carried out on protein extracts from patients' leukocytes to highlight the possible presence of altered neurofibromin as a result of mutations in NF1. Truncated neurofibromin was identified in 274/336 patients (81%), confirming the usefulness and reproducibility of the proposed diagnostic approach. Our methodology can be routinely applied in the diagnostic setting, thanks to its simplicity and reliability. Combined with molecular approaches, it may increase the accuracy and efficiency of NF1 genetic testing. We evaluated a novel diagnostic method to detect truncated forms of neurofibromin in patients fulfilling the clinical criteria for Neurofibromatosis 1. Western blot analysis identified truncated neurofibromin in 274/336 patients (81%). Our results indicate that the proposed technique is cheap and reliable, and could ideally be performed as a preliminary biochemical screening before molecular analysis of the NF1 gene.

  • B cells from nuclear factor kB essential modulator deficient patients fail to differentiate to antibody secreting cells in response to TLR9 ligand.

    Publication Date: 01/12/2015 on Clinical immunology (Orlando, Fla.)
    by Giardino G, Cirillo E, Gallo V, Esposito T, Fusco F, Conte MI, Quinti I, Ursini MV, Carsetti R, Pignata C
    DOI: 10.1016/j.clim.2015.08.008

    Hypohidrotic ectodermal dysplasia (HED) consists of disorders resulting from molecular alterations of ectodysplasin-A (EDA) pathway. Hypomorphic mutations in NF-kB essential modulator, downstream EDA, result in HED with immunodeficiency (HED-ID), characterized by susceptibility to encapsulated pyogenic bacteria infections. Increased susceptibility to pneumococcal infections and poor response to polysaccharide antigens are associated with defect in T-independent B-cell immunity. We investigated B-cell differentiation and immunoglobulin secretion induced by the TLR9 ligand CpG in two HED-ID and in a HED patient caused by EDA mutations (XLHED). In HED-ID, only few B cells differentiated into plasma cells upon TLR9 stimulation and memory B cells did not produce IgG and IgA, but small amounts of IgM. Unexpectedly, memory B cells from XLHED patient failed to produce normal IgA or IgG amount upon TLR9 stimulation. Our findings expand the knowledge about the pathogenesis of humoral alterations in HED patients and help explain the susceptibility to pneumococcal infections.

  • Hormonal regulation and characterization of MHG30 gene, a desaturase-like gene of hamster harderian gland.

    Publication Date: 01/11/2015 on The Journal of steroid biochemistry and molecular biology
    by Esposito T, Tammaro P, Paolisso G, Varriale B
    DOI: 10.1016/j.jsbmb.2015.07.010

    The harderian gland (HG) is an orbital gland of the vast majority of land vertebrates. In the Syrian hamster these glands display a marked sexual dimorphism. Here we present data on a male specific clone named MHG30. The MHG30 cDNA (1470 bp) has significant sequence homologies with human #15μ10#Δ6-desaturase enzymes. The expression of MHG30 has been found in male HG and in the liver of both sexes, no other tissue showing the presence of MHG30 mRNA. Castration brings the MHG30 levels below detectable level in about 7 days. In in vitro cultures of male hamster HG cells, androgens (A) determine an enhancement of MHG30 expression in a time-dependent manner. Conversely, a continuous decrement has been observed in control cells and in cells treated with A plus flutamide (F) or with A and cycloheximide (Cy). Incubation of cells in cultures supplemented with desamethason (Dex) or thyroid hormone (T3) also increases MHG30 expression while 17β-estradiol prevents the stimulatory effect exerted by A, Dex and T3. Findings strongly suggest that the MHG30 gene could be involved in supporting the sexual dimorphism and its expression is likely triggered by a series of hormonal interactions.