Simona Paladino

Researcher of Applied Biology

Name Simona
Surname Paladino
Institution University of Naples – Federico II
Address Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
Simona Paladino


  • Selective roles for cholesterol and actin in compartmentalization of different proteins in the Golgi and plasma membrane of polarized cells.

    Publication Date: 24/10/2008 on The Journal of biological chemistry
    by Lebreton S, Paladino S, Zurzolo C
    DOI: 10.1074/jbc.M803819200

    To determine the roles of cholesterol and the actin cytoskeleton in apical and basolateral protein organization and sorting, we have performed comprehensive confocal fluorescence recovery after photobleaching analyses of apical and basolateral and raft- and non-raft-associated proteins, both at the plasma membrane and in the Golgi apparatus of polarized MDCK cells. We show that at both the apical and basolateral plasma membrane domains, raft-associated proteins diffuse faster than non-raft-associated proteins and that, different from the latter, they become restricted upon depletion of cholesterol. Furthermore, only transmembrane apical proteins are restricted by the actin network. This indicates that cholesterol-dependent domains exist both at the apical and basolateral membranes of polarized cells and that the actin cytoskeleton has a predominant role in the organization of transmembrane proteins independent of their association with rafts at the apical membrane. In the Golgi apparatus apical proteins appear to be segregated from the basolateral ones in a compartment that is sensitive both to cholesterol depletion and actin rearrangements. Furthermore, consistent with the role of actin rearrangements in apical protein sorting, we found that apical proteins exhibit a differential sensitivity to actin depolymerization in the Golgi of polarized and nonpolarized cells.

  • Characterization of the properties and trafficking of an anchorless form of the prion protein.

    Publication Date: 03/08/2007 on The Journal of biological chemistry
    by Campana V, Caputo A, Sarnataro D, Paladino S, Tivodar S, Zurzolo C
    DOI: 10.1074/jbc.M701468200

    Conversion of PrP(C) into PrP(Sc) is the central event in the pathogenesis of transmissible prion diseases. Although the molecular basis of this event and the intracellular compartment where it occurs are not yet understood, the association of PrP with cellular membranes and in particular its presence in detergent-resistant microdomains appears to be of critical importance. In addition it appears that scrapie conversion requires membrane-bound glycosylphosphatidylinositol (GPI)-linked PrP. The GPI anchor may affect either the conformation, the intracellular localization, or the association of the prion protein with specific membrane domains. However, how this occurs is not known. To understand the relevance of the GPI anchor for the cellular behavior of PrP, we have studied the biosynthesis and localization of a PrP version which lacks the GPI anchor attachment signal (PrP Delta GPI). We found that PrP Delta GPI is tethered to cell membranes and associates to membrane detergent-resistant microdomains but does not assume a transmembrane topology. Differently to PrP(C), this protein does not localize at the cell surface but is mainly released in the culture media in a fully glycosylated soluble form. The cellular behavior of anchorless PrP explains why PrP Delta GPI Tg mice can be infected but do not show the classical signs of the disorder, thus indicating that the plasma membrane localization of PrP(C) and/or of the converted scrapie form might be necessary for the development of a symptomatic disease.

  • Oligomerization is a specific requirement for apical sorting of glycosyl-phosphatidylinositol-anchored proteins but not for non-raft-associated apical proteins.

    Publication Date: 01/03/2007 on Traffic (Copenhagen, Denmark)
    by Paladino S, Sarnataro D, Tivodar S, Zurzolo C
    DOI: 10.1111/j.1600-0854.2006.00522.x

    Protein apical sorting in polarized epithelial cells is mediated by two different mechanisms, raft dependent and raft independent. In Madin-Darby canine kidney (MDCK) cells, an essential step for apical sorting of glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) is their coalescence into high-molecular-weight (HMW) oligomers. Here we show that this mechanism is also functional in Fischer rat thyroid cells, which possess a different sorting phenotype compared with MDCK cells. We demonstrate that, as in MDCK cells, both apical and basolateral GPI-APs associate with detergent-resistant microdomains, but that only the apical proteins are able to oligomerize into HMW complexes during their passage through the medial Golgi. We also show that oligomerization is a specific requirement for apical sorting of GPI-APs and is not used by transmembrane, non-raft-associated apical proteins.

  • Analysis of detergent-resistant membranes associated with apical and basolateral GPI-anchored proteins in polarized epithelial cells.

    Publication Date: 16/10/2006 on FEBS letters
    by Tivodar S, Paladino S, Pillich R, Prinetti A, Chigorno V, van Meer G, Sonnino S, Zurzolo C
    DOI: 10.1016/j.febslet.2006.09.022

    Detergent-resistant membranes (DRMs) represent specialized membrane domains resistant to detergent extraction, which may serve to segregate proteins in a specific environment in order to improve their function. Segregation of glycosylphosphatidylinositol-anchored proteins (GPI-APs) in DRMs has been shown to be involved in their sorting to the apical membrane in polarized epithelial cells. Nonetheless, we have shown that both apical and basolateral GPI-APs associate with DRMs. In this report we investigated the lipid composition of DRMs associated with an apical and a basolateral GPI-AP. We found that apical and basolateral DRMs contain the same lipid species although in different ratios. This specific lipid ratio is maintained after mixing the cells before lysis indicating that DRMs maintain their identity after Triton extraction.

  • GPI-anchored proteins are directly targeted to the apical surface in fully polarized MDCK cells.

    Publication Date: 27/03/2006 on The Journal of cell biology
    by Paladino S, Pocard T, Catino MA, Zurzolo C
    DOI: 10.1083/jcb.200507116

    The polarity of epithelial cells is dependent on their ability to target proteins and lipids in a directional fashion. The trans-Golgi network, the endosomal compartment, and the plasma membrane act as sorting stations for proteins and lipids. The site of intracellular sorting and pathways used for the apical delivery of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are largely unclear. Using biochemical assays and confocal and video microscopy in living cells, we show that newly synthesized GPI-APs are directly delivered to the apical surface of fully polarized Madin-Darby canine kidney cells. Impairment of basolateral membrane fusion by treatment with tannic acid does not affect the direct apical delivery of GPI-APs, but it does affect the organization of tight junctions and the integrity of the monolayer. Our data clearly demonstrate that GPI-APs are directly sorted to the apical surface without passing through the basolateral membrane. They also reinforce the hypothesis that apical sorting of GPI-APs occurs intracellularly before arrival at the plasma membrane.

  • Detergent-resistant membrane domains but not the proteasome are involved in the misfolding of a PrP mutant retained in the endoplasmic reticulum.

    Publication Date: 01/02/2006 on Journal of cell science
    by Campana V, Sarnataro D, Fasano C, Casanova P, Paladino S, Zurzolo C
    DOI: 10.1242/jcs.02768

    Inherited prion diseases are neurodegenerative pathologies related to genetic mutations in the prion protein (PrP) gene, which favour the conversion of PrP(C) into a conformationally altered pathogenic form, PrP(Sc). The molecular basis of PrP(C)/PrP(Sc) conversion, the intracellular compartment where it occurs and how this process leads to neurological dysfunction are not yet known. We have studied the intracellular synthesis, degradation and localization of a PrP mutant associated with a genetic form of Creutzfeldt-Jakob disease (CJD), PrPT182A, in transfected FRT cells. PrPT182A is retained in the endoplasmic reticulum (ER), is mainly associated with detergent-resistant microdomains (DRMs) and is partially resistant to proteinase K digestion. Although an untranslocated form of this mutant is polyubiquitylated and undergoes ER-associated degradation, the proteasome is not responsible for the degradation of its misfolded form, suggesting that it does not have a role in the pathogenesis of inherited diseases. On the contrary, impairment of PrPT182A association with DRMs by cholesterol depletion leads to its accumulation in the ER and substantially increases its misfolding. These data support the previous hypothesis that DRMs are important for the correct folding of PrP and suggest that they might have a protective role in pathological scrapie-like conversion of PrP mutants.

  • A y(+)LAT-1 mutant protein interferes with y(+)LAT-2 activity: implications for the molecular pathogenesis of lysinuric protein intolerance.

    Publication Date: 01/05/2005 on European journal of human genetics : EJHG
    by Sperandeo MP, Paladino S, Maiuri L, Maroupulos GD, Zurzolo C, Taglialatela M, Andria G, Sebastio G
    DOI: 10.1038/sj.ejhg.5201376

    Lysinuric protein intolerance (LPI) is an inherited aminoaciduria caused by defective cationic amino acid (CAA) transport at the basolateral membrane of epithelial cells in the intestine and kidney. The SLC7A7 gene, mutated in LPI, encodes the y(+)LAT-1 protein, which is the light subunit of the heterodimeric CAA transporter in which 4F2hc is the heavy chain subunit. Co-expression of 4F2hc and y(+)LAT-1 induces the y(+)L activity. This activity is also exerted by another complex composed of 4F2hc and y(+)LAT-2, the latter encoded by the SLC7A6 gene and more ubiquitously expressed than SLC7A7. On the basis of both the pattern of expression and the transport activity, y(+)LAT-2 might compensate for CAA transport when y(+)LAT-1 is defective. By expression in Xenopus laevis oocytes and mammalian cells, we functionally analysed two SLC7A7 mutants, E36del and F152L, respectively, the former displaying a partial dominant-negative effect. The results of the present study provide further insight into the molecular pathogenesis of LPI: a putative multiheteromeric structure of both [4F2hc/y(+)LAT-1] and [4F2hc/y(+)LAT-2], and the interference between y(+)LAT-1 and y(+)LAT-2 proteins. This interference can explain why the compensatory mechanism, that is, an increased expression of SLC7A6 as seen in lymphoblasts from LPI patients, may not be sufficient to restore the y(+)L system activity.

  • Functional interaction between p75NTR and TrkA: the endocytic trafficking of p75NTR is driven by TrkA and regulates TrkA-mediated signalling.

    Publication Date: 01/01/2005 on The Biochemical journal
    by Perrone L, Paladino S, Mazzone M, Nitsch L, Gulisano M, Zurzolo C
    DOI: 10.1042/BJ20041155

    The topology and trafficking of receptors play a key role in their signalling capability. Indeed, receptor function is related to the microenvironment inside the cell, where specific signalling molecules are compartmentalized. The response to NGF (nerve growth factor) is strongly dependent on the trafficking of its receptor, TrkA. However, information is still scarce about the role of the cellular localization of the TrkA co-receptor, p75NTR (where NTR is neurotrophin receptor), following stimulation by NGF. It has been shown that these two receptors play a key role in epithelial tissue and in epithelial-derived tumours, where the microenvironment at the plasma membrane is defined by the presence of tight junctions. Indeed, in thyroid carcinomas, rearrangements of TrkA are frequently found, which produce TrkA mutants that are localized exclusively in the cytoplasm. We used a thyroid cellular model in which it was possible to dissect the trafficking of the two NGF receptors upon neurotrophin stimulation. In FRT (Fischer rat thyroid) cells, endogenous TrkA is localized exclusively on the basolateral surface, while transfected p75NTR is selectively distributed on the apical membrane. This cellular system enabled us to selectively stimulate either p75NTR or TrkA and to analyse the role of receptor trafficking in their signalling capability. We found that, after binding to NGF, p75NTR was co-immunoprecipitated with TrkA and was transcytosed at the basolateral membrane. We showed that the TrkA-p75NTR interaction is necessary for this relocation of p75NTR to the basolateral side. Interestingly, TrkA-specific stimulation by basolateral NGF loading also induced the TrkA-p75NTR interaction and subsequent p75NTR transcytosis at the basolateral surface. Moreover, specific stimulation of p75NTR by NGF activated TrkA and the MAPK (mitogen-activated protein kinase) pathway. Our data indicate that TrkA regulates the subcellular localization of p75NTR upon stimulation with neurotrophins, thus affecting the topology of the signal transduction molecules, driving the activation of a specific signal transduction pathway.

  • Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins.

    Publication Date: 22/11/2004 on The Journal of cell biology
    by Paladino S, Sarnataro D, Pillich R, Tivodar S, Nitsch L, Zurzolo C
    DOI: 10.1083/jcb.200407094

    An essential but insufficient step for apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) in epithelial cells is their association with detergent-resistant microdomains (DRMs) or rafts. In this paper, we show that in MDCK cells both apical and basolateral GPI-APs associate with DRMs during their biosynthesis. However, only apical and not basolateral GPI-APs are able to oligomerize into high molecular weight complexes. Protein oligomerization begins in the medial Golgi, concomitantly with DRM association, and is dependent on protein-protein interactions. Impairment of oligomerization leads to protein missorting. We propose that oligomerization stabilizes GPI-APs into rafts and that this additional step is required for apical sorting of GPI-APs. Two alternative apical sorting models are presented.

  • PrP(C) association with lipid rafts in the early secretory pathway stabilizes its cellular conformation.

    Publication Date: 01/09/2004 on Molecular biology of the cell
    by Sarnataro D, Campana V, Paladino S, Stornaiuolo M, Nitsch L, Zurzolo C
    DOI: 10.1091/mbc.E03-05-0271

    The pathological conversion of cellular prion protein (PrP(C)) into the scrapie prion protein (PrP(Sc)) isoform appears to have a central role in the pathogenesis of transmissible spongiform encephalopathies. However, the identity of the intracellular compartment where this conversion occurs is unknown. Several lines of evidence indicate that detergent-resistant membrane domains (DRMs or rafts) could be involved in this process. We have characterized the association of PrP(C) to rafts during its biosynthesis. We found that PrP(C) associates with rafts already as an immature precursor in the endoplasmic reticulum. Interestingly, compared with the mature protein, the immature diglycosylated form has a different susceptibility to cholesterol depletion vs. sphingolipid depletion, suggesting that the two forms associate with different lipid domains. We also found that cholesterol depletion, which affects raft-association of the immature protein, slows down protein maturation and leads to protein misfolding. On the contrary, sphingolipid depletion does not have any effect on the kinetics of protein maturation or on the conformation of the protein. These data indicate that the early association of PrP(C) with cholesterol-enriched rafts facilitates its correct folding and reinforce the hypothesis that cholesterol and sphingolipids have different roles in PrP metabolism.