Simona Paladino

Researcher of Applied Biology

Name Simona
Surname Paladino
Institution University of Naples – Federico II
Address Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
Simona Paladino


  • Regulation of sub-compartmental targeting and folding properties of the Prion-like protein Shadoo.

    Publication Date: 16/06/2017 on Scientific reports
    by Pepe A, Avolio R, Matassa DS, Esposito F, Nitsch L, Zurzolo C, Paladino S, Sarnataro D
    DOI: 10.1038/s41598-017-03969-2

    Shadoo (Sho), a member of prion protein family, has been shown to prevent embryonic lethality in Prnp (0/0) mice and to be reduced in the brains of rodents with terminal prion diseases. Sho can also affect PrP structural dynamics and can increase the prion conversion into its misfolded isoform (PrP(Sc)), which is amyloidogenic and strictly related to expression, intracellular localization and association of PrP(C) to lipid rafts. We reasoned that if Sho possesses a natural tendency to convert to amyloid-like forms in vitro, it should be able to exhibit "prion-like" properties, such as PK-resistance and aggregation state, also in live cells. We tested this hypothesis, by different approaches in neuronal cells, finding that Sho shows folding properties partially dependent on lipid rafts integrity whose alteration, as well as proteasomal block, regulated generation of intermediate Sho isoforms and exacerbated its misfolding. Moreover, a 18 kDa isoform of Sho, likely bearing the signal peptide, was targeted to mitochondria by interacting with the molecular chaperone TRAP1 which, in turn controlled Sho dual targeting to ER or mitochondria. Our studies contribute to understand the role of molecular chaperones and of PrP-related folding intermediates in "prion-like" conversion.

  • Novel mutations in <i>dystonin</i> provide clues to the pathomechanisms of HSAN-VI.

    Publication Date: 30/05/2017 on Neurology
    by Manganelli F, Parisi S, Nolano M, Tao F, Paladino S, Pisciotta C, Tozza S, Nesti C, Rebelo AP, Provitera V, Santorelli FM, Shy ME, Russo T, Zuchner S, Santoro L
    DOI: 10.1212/WNL.0000000000003992

    To describe a second hereditary sensory autonomic neuropathy type VI (HSAN-VI) family harboring 2 novel heterozygous mutations in the dystonin (DST) gene and to evaluate their effect on neurons derived from induced pluripotent stem cells (iPSC).

  • The combined effect of USP7 inhibitors and PARP inhibitors in hormone-sensitive and castration-resistant prostate cancer cells.

    Publication Date: 22/03/2017 on Oncotarget
    by Morra F, Merolla F, Napolitano V, Ilardi G, Miro C, Paladino S, Staibano S, Cerrato A, Celetti A
    DOI: 10.18632/oncotarget.16463

    Reduced levels of the tumor suppressor protein CCDC6 sensitize cancer cells to the treatment with PARP-inhibitors. The turnover of CCDC6 protein is regulated by the de-ubiquitinase USP7, which also controls the androgen receptor (AR) stability. Here, we correlated the expression levels of CCDC6 and USP7 proteins in primary prostate cancers (PC). Moreover, we tested the efficacy of the USP7 inhibitors, in combination with PARP-inhibitors as a novel therapeutic option in advanced prostate cancer.Experimental techniques: PC cells were exposed to USP7 inhibitor, P5091, together with cycloheximide, to investigate the turnover of the USP7 substrates, AR and CCDC6. As outcome of the AR downregulation, transcription targets of AR and its variant V7 were examined by qPCR. As a result of CCDC6 degradation, the induction of PARP inhibitors sensitivity was evaluated by analyzing PC cells viability and foci formation. We scored and correlated CCDC6 and USP7 expression levels in a prostate cancer tissue microarray (TMA).

  • Metformin restores the mitochondrial network and reverses mitochondrial dysfunction in Down syndrome cells.

    Publication Date: 15/03/2017 on Human molecular genetics
    by Izzo A, Nitti M, Mollo N, Paladino S, Procaccini C, Faicchia D, Calì G, Genesio R, Bonfiglio F, Cicatiello R, Polishchuk E, Polishchuk R, Pinton P, Matarese G, Conti A, Nitsch L
    DOI: 10.1093/hmg/ddx016

    Alterations in mitochondrial activity and morphology have been demonstrated in human cells and tissues from individuals with Down syndrome (DS), as well as in DS mouse models. An impaired activity of the transcriptional coactivator PGC-1α/PPARGC1A due to the overexpression of chromosome 21 genes, such as NRIP1/RIP140, has emerged as an underlying cause of mitochondrial dysfunction in DS. We tested the hypothesis that the activation of the PGC-1α pathway might indeed reverse this mitochondrial dysfunction. To this end, we investigated the effects of metformin, a PGC-1α-activating drug, on mitochondrial morphology and function in DS foetal fibroblasts. Metformin induced both the expression of PGC-1α and an augmentation of its activity, as demonstrated by the increased expression of target genes, strongly promoting mitochondrial biogenesis. Furthermore, metformin enhanced oxygen consumption, ATP production, and overall mitochondrial activity. Most interestingly, this treatment reversed the fragmentation of mitochondria observed in DS and induced the formation of a mitochondrial network with a branched and elongated tubular morphology. Concomitantly, cristae remodelling occurred and the alterations observed by electron microscopy were significantly reduced. We finally demonstrated that the expression of genes of the fission/fusion machinery, namely OPA1 and MFN2, was reduced in trisomic cells and increased by metformin treatment. These results indicate that metformin promotes the formation of a mitochondrial network and corrects the mitochondrial dysfunction in DS cells. We speculate that alterations in the mitochondrial dynamics can be relevant in the pathogenesis of DS and that metformin can efficiently counteract these alterations, thus exerting protective effects against DS-associated pathologies.

  • Convergent Effects of Resveratrol and PYK2 on Prostate Cells.

    Publication Date: 13/09/2016 on International journal of molecular sciences
    by Conte A, Kisslinger A, Procaccini C, Paladino S, Oliviero O, de Amicis F, Faicchia D, Fasano D, Caputo M, Matarese G, Pierantoni GM, Tramontano D
    DOI: 10.3390/ijms17091542

    Resveratrol, a dietary polyphenol, is under consideration as chemopreventive and chemotherapeutic agent for several diseases, including cancer. However, its mechanisms of action and its effects on non-tumor cells, fundamental to understand its real efficacy as chemopreventive agent, remain largely unknown. Proline-rich tyrosine kinase 2 (PYK2), a non-receptor tyrosine kinase acting as signaling mediator of different stimuli, behaves as tumor-suppressor in prostate. Since, PYK2 and RSV share several fields of interaction, including oxidative stress, we have investigated their functional relationship in human non-transformed prostate EPN cells and in their tumor-prone counterpart EPN-PKM, expressing a PYK2 dead-kinase mutant. We show that RSV has a strong biological activity in both cell lines, decreasing ROS production, inducing morphological changes and reversible growth arrest, and activating autophagy but not apoptosis. Interestingly, the PYK2 mutant increases basal ROS and autophagy levels, and modulates the intensity of RSV effects. In particular, the anti-oxidant effect of RSV is more potent in EPN than in EPN-PKM, whereas its anti-proliferative and pro-autophagic effects are more significant in EPN-PKM. Consistently, PYK2 depletion by RNAi replicates the effects of the PKM mutant. Taken together, our results reveal that PYK2 and RSV act on common cellular pathways and suggest that RSV effects on prostate cells may depend on mutational-state or expression levels of PYK2 that emerges as a possible mediator of RSV mechanisms of action. Moreover, the observation that resveratrol effects are reversible and not associated to apoptosis in tumor-prone EPN-PKM cells suggests caution for its use in humans.

  • FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC.

    Publication Date: 20/05/2015 on Oncotarget
    by Morra F, Luise C, Merolla F, Poser I, Visconti R, Ilardi G, Paladino S, Inuzuka H, Guggino G, Monaco R, Colecchia D, Monaco G, Cerrato A, Chiariello M, Denning K, Claudio PP, Staibano S, Celetti A
    DOI: 10.18632/oncotarget.3708

    CCDC6 gene product is a pro-apoptotic protein substrate of ATM, whose loss or inactivation enhances tumour progression. In primary tumours, the impaired function of CCDC6 protein has been ascribed to CCDC6 rearrangements and to somatic mutations in several neoplasia. Recently, low levels of CCDC6 protein, in NSCLC, have been correlated with tumor prognosis. However, the mechanisms responsible for the variable levels of CCDC6 in primary tumors have not been described yet.We show that CCDC6 turnover is regulated in a cell cycle dependent manner. CCDC6 undergoes a cyclic variation in the phosphorylated status and in protein levels that peak at G2 and decrease in mitosis. The reduced stability of CCDC6 in the M phase is dependent on mitotic kinases and on degron motifs that are present in CCDC6 and direct the recruitment of CCDC6 to the FBXW7 E3 Ubl. The de-ubiquitinase enzyme USP7 appears responsible of the fine tuning of the CCDC6 stability, affecting cells behaviour and drug response.Thus, we propose that the amount of CCDC6 protein in primary tumors, as reported in lung, may depend on the impairment of the CCDC6 turnover due to altered protein-protein interaction and post-translational modifications and may be critical in optimizing personalized therapy.

  • New therapeutic perspectives in CCDC6 deficient lung cancer cells.

    Publication Date: 01/05/2015 on International journal of cancer
    by Morra F, Luise C, Visconti R, Staibano S, Merolla F, Ilardi G, Guggino G, Paladino S, Sarnataro D, Franco R, Monaco R, Zitomarino F, Pacelli R, Monaco G, Rocco G, Cerrato A, Linardopoulos S, Muller MT, Celetti A
    DOI: 10.1002/ijc.29263

    Non-small cell lung cancer (NSCLC) is the main cause of cancer-related death worldwide and new therapeutic strategies are urgently needed. In this study, we have characterized a panel of NSC lung cancer cell lines for the expression of coiled-coil-domain containing 6 (CCDC6), a tumor suppressor gene involved in apoptosis and DNA damage response. We show that low CCDC6 protein levels are associated with a weak response to DNA damage and a low number of Rad51 positive foci. Moreover, CCDC6 deficient lung cancer cells show defects in DNA repair via homologous recombination. In accordance with its role in the DNA damage response, CCDC6 attenuation confers resistance to cisplatinum, the current treatment of choice for NSCLC, but sensitizes the cells to olaparib, a small molecule inhibitor of the repair enzymes PARP1/2. Remarkably, the combination of the two drugs is more effective than each agent individually, as demonstrated by a combination index <1. Finally, CCDC6 is expressed at low levels in about 30% of the NSCL tumors we analyzed by TMA immunostaining. The weak CCDC6 protein staining is significatively correlated with the presence of lymph node metastasis (p ≤ 0.02) and negatively correlated to the disease free survival (p ≤ 0.01) and the overall survival (p ≤ 0.05). Collectively, the data indicate that CCDC6 levels provide valuable insight for OS. CCDC6 could represent a predictive biomarker of resistance to conventional single mode therapy and yield insight on tumor sensitivity to PARP inhibitors in NSCLC.

  • Long-term follow-up of patients with phenylketonuria treated with tetrahydrobiopterin: a seven years experience.

    Publication Date: 08/02/2015 on Orphanet journal of rare diseases
    by Scala I, Concolino D, Della Casa R, Nastasi A, Ungaro C, Paladino S, Capaldo B, Ruoppolo M, Daniele A, Bonapace G, Strisciuglio P, Parenti G, Andria G
    DOI: 10.1186/s13023-015-0227-8

    Phenylketonuria (PKU) is an autosomal recessive disorder caused by the deficiency of phenylalanine hydroxylase that catalyzes the conversion of phenylalanine to tyrosine, using tetrahydrobiopterin (BH4) as coenzyme. Besides dietary phenylalanine restriction, new therapeutic options are emerging, such as the treatment with BH4 in subgroups of PKU patients responding to a loading test with BH4.

  • Trafficking and Membrane Organization of GPI-Anchored Proteins in Health and Diseases.

    Publication Date: 01/01/2015 on Current topics in membranes
    by Paladino S, Lebreton S, Zurzolo C
    DOI: 10.1016/bs.ctm.2015.03.006

    Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are a class of lipid-anchored proteins attached to the membranes by a glycolipid anchor that is added, as posttranslation modification, in the endoplasmic reticulum. GPI-APs are expressed at the cell surface of eukaryotes where they play diverse vital functions. Like all plasma membrane proteins, GPI-APs must be correctly sorted along the different steps of the secretory pathway to their final destination. The presence of both a glycolipid anchor and a protein portion confers special trafficking features to GPI-APs. Here, we discuss the recent advances in the field of GPI-AP trafficking, focusing on the mechanisms regulating their biosynthetic pathway and plasma membrane organization. We also discuss how alterations of these mechanisms can result in different diseases. Finally, we will examine the strict relationship between the trafficking and function of GPI-APs in epithelial cells.

  • Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis.

    Publication Date: 23/06/2014 on Developmental cell
    by Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, Paladino S, Baldantoni D, van IJzendoorn SC, Chan J, Chang CJ, Amoresano A, Pane F, Pucci P, Tarallo A, Parenti G, Brunetti-Pierri N, Settembre C, Ballabio A, Polishchuk RS
    DOI: 10.1016/j.devcel.2014.04.033

    Copper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we show that, in response to elevated copper, ATP7B moves from the Golgi to lysosomes and imports metal into their lumen. ATP7B enables lysosomes to undergo exocytosis through the interaction with p62 subunit of dynactin that allows lysosome translocation toward the canalicular pole of hepatocytes. Activation of lysosomal exocytosis stimulates copper clearance from the hepatocytes and rescues the most frequent Wilson-disease-causing ATP7B mutant to the appropriate functional site. Our findings indicate that lysosomes serve as an important intermediate in ATP7B trafficking, whereas lysosomal exocytosis operates as an integral process in copper excretion and hence can be targeted for therapeutic approaches to combat Wilson disease.