-
Publication Date:
21/05/2019
on International journal of molecular sciences
by Squillaro T, Alessio N, Capasso S, Di Bernardo G, Melone MAB, Peluso G, Galderisi U
DOI: 10.3390/ijms20102508
Chromatin modifiers play a crucial role in maintaining cell identity through modulation of gene expression patterns. Their deregulation can have profound effects on cell fate and functions. Among epigenetic regulators, the MECP2 protein is particularly attractive. Mutations in the gene are responsible for more than 90% of cases of Rett syndrome (RTT), a progressive neurodevelopmental disorder. As a chromatin modulator, MECP2 can have a key role in the government of stem cell biology. Previously, we showed that deregulated MECP2 expression triggers senescence in mesenchymal stromal cells (MSCs) from (RTT) patients. Over the last few decades, it has emerged that senescent cells show alterations in the metabolic state. Metabolic changes related to stem cell senescence are particularly detrimental, since they contribute to the exhaustion of stem cell compartments, which in turn determine the falling in tissue renewal and functionality. Herein, we dissect the role of impaired MECP2 function in triggering senescence along with other senescence-related aspects, such as metabolism, in MSCs from a mouse model of RTT. We found that MECP2 deficiencies lead to senescence and impaired mitochondrial energy production. Our results support the idea that an alteration in mitochondria metabolic functions could play an important role in the pathogenesis of RTT.
-
Publication Date:
01/05/2019
on Journal of molecular medicine (Berlin, Germany)
by Squillaro T, Finicelli M, Alessio N, Del Gaudio S, Di Bernardo G, Melone MAB, Peluso G, Galderisi U
DOI: 10.1007/s00109-019-01788-8
Base excision repair (BER) is a frontline repair mechanism that operates through the G phase of the cell cycle, which ensures the genome integrity by repairing thousands of DNA lesions due to endogenous and exogenous agents. Its correct functioning is fundamental for cell viability and the health of the organism. Uracil is one of the most prevalent lesions that appears in DNA arising by spontaneous or enzymatic deamination of cytosine or misincorporation of the deoxyuridine 5'-triphosphate nucleotide (dUTP) in place of deoxythymidine 5'-triphosphate (dTTP) during DNA replication. In the first pathway, the uracil will preferentially pair with adenine, leading to C:G → T:A transition. When uracil in DNA arises from misincorporation of dUTP instead of dTTP, this process will result in A:U pairs. Organisms counteract the mutagenic effects of uracil in DNA using the BER repair system, which is mediated by a member of the uracil-DNA glycosylase (UDG) superfamily. Several assays evaluating the in vitro BER enzyme activity have been described so far. Some of these measure the BER activity by an oligonucleotide incision assay using radiolabeled duplex oligo. Others use circular double-stranded DNA substrates containing a defined lesion. The novelty of our method resides in its rapidity and safety (radioactive free detection) as well as in the possibility of having a reliable quantitative determination of UDG activity in both cell and tissue extracts. We also demonstrated the effectiveness of our method in assessing UDG activity in cell lines with a reduced DNA repair capacity and in different kinds of tissues. KEY MESSAGES: • Base excision repair is a fundamental repair mechanism ensuring the genome integrity. • Uracil is one of the most prevalent lesions that appears in DNA. • The mutagenic effects of uracil in DNA are mitigated by the uracil-DNA glycosylase. • Several assays evaluating the in vitro BER activity have been described so far. • A safe and quantitative assay evaluating the in vitro UDG activity is required.
-
Publication Date:
26/03/2019
on World journal of stem cells
by Alessio N, Squillaro T, Monda V, Peluso G, Monda M, Melone MA, Galderisi U, Di Bernardo G
DOI: 10.4252/wjsc.v11.i3.180
Research on physiopathology of obesity may receive new hints from studies on skinny people (SP). These are individuals who show a poor or null gaining of body weight, in spite of high-calorie intake, by far exceeding the body requirements.
-
Publication Date:
27/12/2018
on Ophthalmic genetics
by Napolitano F, Di Iorio V, Di Iorio G, Melone MAB, Gianfrancesco F, Simonelli F, Esposito T, Testa F, Sampaolo S
DOI: 10.1080/13816810.2018.1558261
Extracellular matrix molecular components, previously linked to multisystem syndromes include collagens, fibrillins and laminins. Recently, we described a novel multisystem syndrome caused by the c.9418G>A p.(V3140M) mutation in the laminin alpha-5 (LAMA5) gene, which affects connective tissues of all organs and apparatus in a three generation family. In the same family, we have also reported a myopic trait, which, however, was linked to the Prolyl 4-hydroxylase subunit alpha-2 (P4HA2) gene. Results of investigation on vitreous changes and their pathogenesis are reported in the present study.
-
Publication Date:
25/12/2018
on Neurocase
by Saracino D, Allegorico L, Barbarulo AM, Pollo B, Giaccone G, D'Amico A, D'Incerti L, Bugiani O, Di Iorio G, Sampaolo S, Melone MAB
DOI: 10.1080/13554794.2018.1561898
Behçet's disease is a chronic inflammatory disorder manifesting as a vasculitis that affects arteries and veins of any size. Up to 44% of cases may also present with neurological symptoms, thus defining Neuro-Behçet's disease. We describe a case of Neuro-Behçet's disease characterized by progressive behavioral and cognitive deterioration prevailing over other neurological symptoms, without evident systemic involvement.
-
Publication Date:
05/12/2018
on Radiology case reports
by Dato C, Capaldo G, Terracciano C, Napolitano F, D'Amico A, Pappatà S, Santorelli FM, Di Iorio G, Sampaolo S, Melone MA
DOI: 10.1016/j.radcr.2018.11.007
X-linked adrenoleukodystrophy (X-ALD) is a rare inherited metabolic disease affecting the nervous system and the adrenal glands. It is caused by a mutation of the gene, resulting in the impaired degradation of very long-chain fatty acids and their subsequent accumulation in several organs and tissues. X-ALD is notable for its high phenotypical variability, that includes isolated adrenocortical insufficiency, slowly progressive myelopathy with paraparesis, ataxia, and peripheral neuropathy to severe childhood cerebral forms. Here, we describe the case of an X-ALD patient with a p.Gly343Val mutation in gene, who presented in adulthood with a spinal syndrome of mild severity, and later developed a progressive cognitive and behavioral syndrome. Our patient showed a striking correlation between clinical phenotype and neuroimaging, including a brain fluoro-2-deoxy-d-glucose positron emission tomography that displayed an atypical cerebral glucose metabolism.
-
Publication Date:
04/12/2018
on Frontiers in neurology
by D'Amore A, Tessa A, Casali C, Dotti MT, Filla A, Silvestri G, Antenora A, Astrea G, Barghigiani M, Battini R, Battisti C, Bruno I, Cereda C, Dato C, Di Iorio G, Donadio V, Felicori M, Fini N, Fiorillo C, Gallone S, Gemignani F, Gigli GL, Graziano C, Guerrini R, Gurrieri F, Kariminejad A, Lieto M, Marques LourenḈo C, Malandrini A, Mandich P, Marcotulli C, Mari F, Massacesi L, Melone MAB, Mignarri A, Milone R, Musumeci O, Pegoraro E, Perna A, Petrucci A, Pini A, Pochiero F, Pons MR, Ricca I, Rossi S, Seri M, Stanzial F, Tinelli F, Toscano A, Valente M, Federico A, Rubegni A, Santorelli FM
DOI: 10.3389/fneur.2018.00981
Hereditary spastic paraplegia (HSP) refers to a group of genetically heterogeneous neurodegenerative motor neuron disorders characterized by progressive age-dependent loss of corticospinal motor tract function, lower limb spasticity, and weakness. Recent clinical use of next generation sequencing (NGS) methodologies suggests that they facilitate the diagnostic approach to HSP, but the power of NGS as a first-tier diagnostic procedure is unclear. The larger-than-expected genetic heterogeneity-there are over 80 potential disease-associated genes-and frequent overlap with other clinical conditions affecting the motor system make a molecular diagnosis in HSP cumbersome and time consuming. In a single-center, cross-sectional study, spanning 4 years, 239 subjects with a clinical diagnosis of HSP underwent molecular screening of a large set of genes, using two different customized NGS panels. The latest version of our targeted sequencing panel () comprises 118 genes known to be associated with HSP. Using an in-house validated bioinformatics pipeline and several tools to predict mutation pathogenicity, we obtained a positive diagnostic yield of 29% (70/239), whereas variants of unknown significance (VUS) were found in 86 patients (36%), and 83 cases remained unsolved. This study is among the largest screenings of consecutive HSP index cases enrolled in real-life clinical-diagnostic settings. Its results corroborate NGS as a modern, first-step procedure for molecular diagnosis of HSP. It also disclosed a significant number of new mutations in ultra-rare genes, expanding the clinical spectrum, and genetic landscape of HSP, at least in Italy.
-
Publication Date:
26/10/2018
on Journal of cellular physiology
by Di Cristo F, Finicelli M, Digilio FA, Paladino S, Valentino A, Scialò F, D'Apolito M, Saturnino C, Galderisi U, Giordano A, Melone MAB, Peluso G
DOI: 10.1002/jcp.27602
Mitochondrial dysfunction seems to play a fundamental role in the pathogenesis of neurodegeneration in Huntington's disease (HD). We assessed possible neuroprotective actions of meldonium, a small molecule affecting mitochondrial fuel metabolism, in in vitro and in vivo HD models. We found that meldonium was able to prevent cytotoxicity induced by serum deprivation, to reduce the accumulation of mutated huntingtin (mHtt) aggregates, and to upregulate the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in mHTT-expressing cells. The PGC-1α increase was accompanied by the increment of mitochondrial mass and by the rebalancing of mitochondrial dynamics with a promotion of the mitochondrial fusion. Meldonium-induced PGC-1α significantly alleviated motor dysfunction and prolonged the survival of a transgenic HD Drosophila model in which mHtt expression in the nervous system led to progressive motor performance deficits. Our study strongly suggests that PGC-1α, as a master coregulator of mitochondrial biogenesis, energy homeostasis, and antioxidant defense, is a potential therapeutic target in HD.
-
Publication Date:
14/10/2018
on Journal of cellular physiology
by Finicelli M, Squillaro T, Di Cristo F, Di Salle A, Melone MAB, Galderisi U, Peluso G
DOI: 10.1002/jcp.27506
Metabolic syndrome (MetS) is defined as the co-occurrence of metabolic risk factors that includes insulin resistance, hyperinsulinemia, impaired glucose tolerance, type 2 diabetes mellitus, dyslipidemia, and visceral obesity. The clinical significance of MetS consists of identifying a subgroup of patients sharing a common physiopathological state predisposing to chronic diseases. Clinical and scientific studies pinpoint lifestyle modification as an effective strategy aiming to reduce several features accountable for the risk of MetS onset. Among the healthy dietary patterns, the Mediterranean diet (MedDiet) emerges in terms of beneficial properties associated with longevity. Current evidence highlights the protective effect exerted by MedDiet on the different components of MetS. Interestingly, the effect exerted by polyphenols contained within the representative MedDiet components (i.e., olive oil, red wine, and nuts) seems to be accountable for the beneficial properties associated to this dietary pattern. In this review, we aim to summarize the principal evidence regarding the effectiveness of MedDiet-polyphenols in preventing or delaying the physiopathological components accountable for MetS onset. These findings may provide useful insights concerning the health properties of MedDiet-polyphenols as well as the novel targets destined to a tailored approach to MetS.
-
Publication Date:
15/07/2018
on Journal of the neurological sciences
by Signoriello E, Cirillo M, Puoti G, Signoriello G, Negro A, Koci E, Melone MAB, Rapacciuolo A, Maresca G, Lus G
DOI: 10.1016/j.jns.2018.04.042
To investigate a possible association between isolated white matter lesions suggestive of demyelinating disease in magnetic resonance imaging (MRI) and patent foramen ovale (PFO) evidence in migraine patients, with or without aura.