Marina Melone

Professor of Neurology
Former Director of the CIRN

Name Marina
Surname Melone
Institution Università degli Studi della Campania Luigi Vanvitelli
Telephone +39 081 566 6810
Mobile +39 333 956 6365
Address Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases, University of Campania "Luigi Vanvitelli", Napoli, Italy
Resume Download
Marina Melone


  • Alterations in the carnitine cycle in a mouse model of Rett syndrome.

    Publication Date: 02/02/2017 on Scientific reports
    by Mucerino S, Di Salle A, Alessio N, Margarucci S, Nicolai R, Melone MA, Galderisi U, Peluso G
    DOI: 10.1038/srep41824

    Rett syndrome (RTT) is a neurodevelopmental disease that leads to intellectual deficit, motor disability, epilepsy and increased risk of sudden death. Although in up to 95% of cases this disease is caused by de novo loss-of-function mutations in the X-linked methyl-CpG binding protein 2 gene, it is a multisystem disease associated also with mitochondrial metabolic imbalance. In addition, the presence of long QT intervals (LQT) on the patients' electrocardiograms has been associated with the development of ventricular tachyarrhythmias and sudden death. In the attempt to shed light on the mechanism underlying heart failure in RTT, we investigated the contribution of the carnitine cycle to the onset of mitochondrial dysfunction in the cardiac tissues of two subgroups of RTT mice, namely Mecp2(+/-) NQTc and Mecp2(+/-) LQTc mice, that have a normal and an LQT interval, respectively. We found that carnitine palmitoyltransferase 1 A/B and carnitine acylcarnitine translocase were significantly upregulated at mRNA and protein level in the heart of Mecp2(+/-) mice. Moreover, the carnitine system was imbalanced in Mecp2(+/-) LQTc mice due to decreased carnitine acylcarnitine transferase expression. By causing accumulation of intramitochondrial acylcarnitines, this imbalance exacerbated incomplete fatty acid oxidation, which, in turn, could contribute to mitochondrial overload and sudden death.

  • Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes.

    Publication Date: 18/01/2017 on Journal of cellular physiology
    by Squillaro T, Antonucci I, Alessio N, Esposito A, Cipollaro M, Melone MA, Peluso G, Stuppia L, Galderisi U
    DOI: 10.1002/jcp.25807

    Lysosomal storage disorders (LDS) comprise a group of rare multisystemic diseases resulting from inherited gene mutations that impair lysosomal homeostasis. The most common LSDs, Gaucher disease (GD), and Fabry disease (FD) are caused by deficiencies in the lysosomal glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes, respectively. Given the systemic nature of enzyme deficiency, we hypothesized that the stem cell compartment of GD and FD patients might be also affected. Among stem cells, mesenchymal stem cells (MSCs) are a commonly investigated population given their role in hematopoiesis and the homeostatic maintenance of many organs and tissues. Since the impairment of MSC functions could pose profound consequences on body physiology, we evaluated whether GBA and GLA silencing could affect the biology of MSCs isolated from bone marrow and amniotic fluid. Those cell populations were chosen given the former's key role in organ physiology and the latter's intriguing potential as an alternative stem cell model for human genetic disease. Our results revealed that GBA and GLA deficiencies prompted cell cycle arrest along with the impairment of autophagic flux and an increase of apoptotic and senescent cell percentages. Moreover, an increase in ataxia-telangiectasia-mutated staining 1 hr after oxidative stress induction and a return to basal level at 48 hr, along with persistent gamma-H2AX staining, indicated that MSCs properly activated DNA repair signaling, though some damages remained unrepaired. Our data therefore suggest that MSCs with reduced GBA or GLA activity are prone to apoptosis and senescence due to impaired autophagy and DNA repair capacity.

  • Huntingtin polyQ Mutation Impairs the 17β-Estradiol/Neuroglobin Pathway Devoted to Neuron Survival.

    Publication Date: 12/12/2016 on Molecular neurobiology
    by Nuzzo MT, Fiocchetti M, Totta P, Melone MA, Cardinale A, Fusco FR, Gustincich S, Persichetti F, Ascenzi P, Marino M
    DOI: 10.1007/s12035-016-0337-x

    Among several mechanisms underlying the well-known trophic and protective effects of 17β-estradiol (E2) in the brain, we recently reported that E2 induces the up-regulation of two anti-apoptotic and neuroprotectant proteins: huntingtin (HTT) and neuroglobin (NGB). Here, we investigate the role of this up-regulation. The obtained results indicate that E2 promotes NGB-HTT association, induces the localization of the complex at the mitochondria, and protects SK-N-BE neuroblastoma cells and murine striatal cells, which express wild-type HTT (i.e., polyQ(7)), against H2O2-induced apoptosis. All E2 effects were completely abolished in HTT-knocked out SK-N-BE cells and in striatal neurons expressing the mutated form of HTT (mHTT; i.e., polyQ(111)) typical of Huntington's disease (HD). As a whole, these data provide a new function of wild-type HTT which drives E2-induced NGB in mitochondria modulating NGB anti-apoptotic activity. This new function is lost by HTT polyQ pathological expansion. These data evidence the existence of a novel E2/HTT/NGB neuroprotective axis that may play a relevant role in the development of HD therapeutics.

  • Dopamine exacerbates mutant Huntingtin toxicity via oxidative-mediated inhibition of autophagy in SH-SY5Y neuroblastoma cells: Beneficial effects of anti-oxidant therapeutics.

    Publication Date: 01/12/2016 on Neurochemistry international
    by Vidoni C, Castiglioni A, Seca C, Secomandi E, Melone MA, Isidoro C
    DOI: 10.1016/j.neuint.2016.11.003

    Neuronal cell death in Huntington's Disease (HD) is associated with the abnormal expansions of a polyglutamine (polyQ) tract in the huntingtin protein (Htt) at the N-terminus that causes the misfolding and aggregation of the mutated protein (mHtt). Autophagy-lysosomal degradation of Htt aggregates may protect the neurons in HD. HD patients eventually manifest parkinsonian-like symptoms, which underlie defects in the dopaminergic system. We hypothesized that dopamine (DA) exacerbates the toxicity in affected neurons by over-inducing an oxidative stress that negatively impinges on the autophagy clearance of mHtt and thus precipitating neuronal cell death. Here we show that the hyper-expression of mutant (>113/150) polyQ Htt is per se toxic to dopaminergic human neuroblastoma SH-SY5Y cells, and that DA exacerbates this toxicity leading to apoptosis and secondary necrosis. DA toxicity is mediated by ROS production (mainly anion superoxide) that elicits a block in the formation of autophagosomes. We found that the pre-incubation with N-Acetyl-l-Cysteine (a quinone reductase inducer) or Deferoxamine (an iron chelator) prevents the generation of ROS, restores the autophagy degradation of mHtt and preserves the cell viability in SH-SY5Y cells expressing the polyQ Htt and exposed to DA. The present findings suggest that DA-induced impairment of autophagy underlies the parkinsonism in HD patients. Our data provide a mechanistic explanation of the DA toxicity in dopaminergic neurons expressing the mHtt and support the use of anti-oxidative stress therapeutics to restore protective autophagy in order to slow down the neurodegeneration in HD patients.

  • Correction: Systemic Delivery of Recombinant Brain Derived Neurotrophic Factor (BDNF) in the R6/2 Mouse Model of Huntington's Disease.

    Publication Date: 23/11/2016 on PloS one
    by Giampà C, Montagna E, Dato C, Melone MA, Bernardi G, Fusco FR
    DOI: 10.1371/journal.pone.0166102

    [This corrects the article DOI: 10.1371/journal.pone.0064037.].

  • Rasagiline for sleep disorders in patients with Parkinson's disease: a prospective observational study.

    Publication Date: 29/09/2016 on Neuropsychiatric disease and treatment
    by Schettino C, Dato C, Capaldo G, Sampaolo S, Di Iorio G, Melone MA
    DOI: 10.2147/NDT.S116476

    Rasagiline is a selective, irreversible monoamine oxidase B inhibitor that ameliorates the symptoms of Parkinson's disease (PD) by inhibiting striatal dopamine metabolism. There is also evidence that monoamine oxidase B inhibitors increase melatonin levels in the pineal gland and may have a beneficial effect on sleep disorders, which are a common feature in patients with PD.

  • The Role of Cathepsin D in the Pathogenesis of Human Neurodegenerative Disorders.

    Publication Date: 01/09/2016 on Medicinal research reviews
    by Vidoni C, Follo C, Savino M, Melone MA, Isidoro C
    DOI: 10.1002/med.21394

    In familial neurodegenerative disorders, protein aggregates form continuously because of genetic mutations that drive the synthesis of truncated or unfolded proteins. The oxidative stress imposed by neurotransmitters and environmental neurotoxins constitutes an additional threat to the folding of the proteins and the integrity of organelle membranes in neurons. Failure in degrading such altered materials compromises the function of neurons and eventually leads to neurodegeneration. The lysosomal proteolytic enzyme Cathepsin D is the only aspartic-type protease ubiquitously expressed in all the cells of the human body, and it is expressed at high level in the brain. In general, cathepsin D mediated proteolysis is essential to neuronal cell homeostasis through the degradation of unfolded or oxidized protein aggregates delivered to lysosomes via autophagy or endocytosis. More specifically, many altered neuronal proteins that hallmark neurodegenerative diseases (e.g., the amyloid precursor, α-synuclein, and huntingtin) are physiologic substrates of cathepsin D and would abnormally accumulate if not efficiently degraded by this enzyme. Furthermore, experimental evidence indicates that cathepsin D activity is linked to the metabolism of cholesterol and of glycosaminoglycans, which accounts for its involvement in neuronal plasticity. This review focuses on the unique role of cathepsin D mediated proteolysis in the pathogenesis of human neurodegenerative diseases.

  • A novel diagnostic method to detect truncated neurofibromin in neurofibromatosis 1.

    Publication Date: 01/12/2015 on Journal of neurochemistry
    by Esposito T, Piluso G, Saracino D, Uccello R, Schettino C, Dato C, Capaldo G, Giugliano T, Varriale B, Paolisso G, Di Iorio G, Melone MA
    DOI: 10.1111/jnc.13396

    Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic condition caused by dominant loss-of-function mutations of the tumor suppressor gene NF1 that encodes neurofibromin, a negative regulator of RAS activity. Mutation analysis of NF1 located at 17q11.2 has been hampered by the large size of the gene, the high rate of new mutations, the lack of mutational clustering, and the presence of several homologous loci. To date, about 80% of the reported NF1 mutations are predicted to result in protein truncation, but very few studies have correlated the causative NF1 mutation with its effect at the protein level. We evaluated a novel diagnostic method to detect truncated forms of neurofibromin in a large cohort of unrelated subjects suspected of having NF1, according to the NIH consensus criteria. Western blot analysis was carried out on protein extracts from patients' leukocytes to highlight the possible presence of altered neurofibromin as a result of mutations in NF1. Truncated neurofibromin was identified in 274/336 patients (81%), confirming the usefulness and reproducibility of the proposed diagnostic approach. Our methodology can be routinely applied in the diagnostic setting, thanks to its simplicity and reliability. Combined with molecular approaches, it may increase the accuracy and efficiency of NF1 genetic testing. We evaluated a novel diagnostic method to detect truncated forms of neurofibromin in patients fulfilling the clinical criteria for Neurofibromatosis 1. Western blot analysis identified truncated neurofibromin in 274/336 patients (81%). Our results indicate that the proposed technique is cheap and reliable, and could ideally be performed as a preliminary biochemical screening before molecular analysis of the NF1 gene.

  • Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells.

    Publication Date: 24/11/2015 on Oncotarget
    by Capasso S, Alessio N, Squillaro T, Di Bernardo G, Melone MA, Cipollaro M, Peluso G, Galderisi U
    DOI: 10.18632/oncotarget.6277

    A sharp definition of what a senescent cell is still lacking since we do not have in depth understanding of mechanisms that induce cellular senescence. In addition, senescent cells are heterogeneous, in that not all of them express the same genes and present the same phenotype. To further clarify the classification of senescent cells, hints may be derived by the study of cellular metabolism, autophagy and proteasome activity. In this scenario, we decided to study these biological features in senescence of Mesenchymal Stromal Cells (MSC). These cells contain a subpopulation of stem cells that are able to differentiate in mesodermal derivatives (adipocytes, chondrocytes, osteocytes). In addition, they can also contribute to the homeostatic maintenance of many organs, hence, their senescence could be very deleterious for human body functions. We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation and replicative exhaustion. The first three are considered inducers of acute senescence while extensive proliferation triggers replicative senescence also named as chronic senescence. In all conditions, but replicative and high IR dose senescence, we detected a reduction of the autophagic flux, while proteasome activity was impaired in peroxide-treated and irradiated cells. Differences were observed also in metabolic status. In general, all senescent cells evidenced metabolic inflexibility and prefer to use glucose as energy fuel. Irradiated cells with low dose of X-ray and replicative senescent cells show a residual capacity to use fatty acids and glutamine as alternative fuels, respectively. Our study may be useful to discriminate among different senescent phenotypes.

  • Ruta graveolens L. induces death of glioblastoma cells and neural progenitors, but not of neurons, via ERK 1/2 and AKT activation.

    Publication Date: 18/03/2015 on PloS one
    by Gentile MT, Ciniglia C, Reccia MG, Volpicelli F, Gatti M, Thellung S, Florio T, Melone MA, Colucci-D'Amato L
    DOI: 10.1371/journal.pone.0118864

    Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy) five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138) widely used to test novel drugs in preclinical studies. Ruta graveolens' effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1) obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue's noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.