Marina Melone

Professor of Neurology
Former Director of the CIRN

Name Marina
Surname Melone
Institution Università degli Studi della Campania Luigi Vanvitelli
Telephone +39 081 566 6810
Mobile +39 333 956 6365
E-Mail marina.melone@unicampania.it
Address Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases, University of Campania "Luigi Vanvitelli", Napoli, Italy
Resume Download
Marina Melone

Member PUBLICATIONS

  • Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence: new perspective for Rett syndrome.

    Publication Date: 01/04/2012 on Molecular biology of the cell
    by Squillaro T, Alessio N, Cipollaro M, Melone MA, Hayek G, Renieri A, Giordano A, Galderisi U
    DOI: 10.1091/mbc.E11-09-0784

    MECP2 protein binds preferentially to methylated CpGs and regulates gene expression by causing changes in chromatin structure. The mechanism by which impaired MECP2 activity can induce pathological abnormalities in the nervous system of patients with Rett syndrome (RTT) is not clearly understood. To gain further insight into the role of MECP2 in human neurogenesis, we compared the neural differentiation process in mesenchymal stem cells (MSCs) obtained from a RTT patient and from healthy donors. We further analyzed neural differentiation in a human neuroblastoma cell line carrying a partially silenced MECP2 gene. Senescence and reduced expression of neural markers were observed in proliferating and differentiating MSCs from the RTT patient, which suggests that impaired activity of MECP2 protein may impair neural differentiation, as observed in RTT patients. Next, we used an inducible expression system to silence MECP2 in neuroblastoma cells before and after the induction of neural differentiation via retinoic acid treatment. This approach was used to test whether MECP2 inactivation affected the cell fate of neural progenitors and/or neuronal differentiation and maintenance. Overall, our data suggest that neural cell fate and neuronal maintenance may be perturbed by senescence triggered by impaired MECP2 activity either before or after neural differentiation.

  • Changes in the expression of extracellular regulated kinase (ERK 1/2) in the R6/2 mouse model of Huntington's disease after phosphodiesterase IV inhibition.

    Publication Date: 01/04/2012 on Neurobiology of disease
    by Fusco FR, Anzilotti S, Giampà C, Dato C, Laurenti D, Leuti A, Colucci D'Amato L, Perrone L, Bernardi G, Melone MA
    DOI: 10.1016/j.nbd.2012.01.011

    The mitogen-activated protein kinases (MAPKs) superfamily comprises three major signaling pathways: the extracellular signal-regulated protein kinases (ERKs), the c-Jun N-terminal kinases or stress-activated protein kinases (JNKs/SAPKs) and the p38 family of kinases. ERK 1/2 signaling has been implicated in a number of neurodegenerative disorders, including Huntington's disease (HD). Phosphorylation patterns of ERK 1/2 and JNK are altered in cell models of HD. In this study, we aimed at studying the correlations between ERK 1/2 and the neuronal vulnerability to HD degeneration in the R6/2 transgenic mouse model of HD. Single and double-label immunofluorescence for phospho-ERK (pERK, the activated form of ERK) and for each of the striatal neuronal markers were employed on perfusion-fixed brain sections from R6/2 and wild-type mice. Moreover, Phosphodiesterase 4 inhibition through rolipram was used to study the effects on pERK expression in the different types of striatal neurons. We completed our study with western blot analysis. Our study shows that pERK levels increase with age in the medium spiny striatal neurons and in the parvalbumin interneurons, and that rolipram counteracts such increase in pERK. Conversely, cholinergic and somatostatinergic interneurons of the striatum contain higher levels of pERK in the R6/2 mice compared to the controls. Rolipram induces an increase in pERK expression in these interneurons. Thus, our study confirms and extends the concept that the expression of phosphorylated ERK 1/2 is related to neuronal vulnerability and is implicated in the pathophysiology of cell death in HD.

  • Immunohistochemical localization of receptor for advanced glycation end (RAGE) products in the R6/2 mouse model of Huntington's disease.

    Publication Date: 10/02/2012 on Brain research bulletin
    by Anzilotti S, Giampà C, Laurenti D, Perrone L, Bernardi G, Melone MA, Fusco FR
    DOI: 10.1016/j.brainresbull.2011.01.009

    The receptor for advanced glycation end (RAGE) products is a multi-ligand receptor that belongs to the immunoglobulin superfamily of cell surface receptors, whose ligands are known to be upregulated in neuropathological conditions. RAGE upregulation has been described in neurodegenerative diseases, such as Alzheimer's disease, Creutzfeldt-Jakob's disease and Huntington's disease (HD). To analyze in detail the implication of RAGE in HD, we studied the immunohistochemical distribution of RAGE in the striatum of the R6/2 mouse model of HD, with particular attention to the neuronal subpopulations and their relative vulnerability to HD neurodegeneration. We show that RAGE immunoreactivity is evenly distributed to the cytoplasm of neurons in the wild type mouse, while it is finely granular in the cytoplasm of striatal neurons of R6/2 mouse. RAGE is distributed in 98% of spiny projection neurons, both in the normal mouse and in the R6/2. RAGE co-localizes with all of the striatal interneuron subsets both in the wild-type and in the R6/2 mouse. However, the intensity of RAGE immunoreactivity is significantly higher in the spiny neurons and in the PARV neurons of R6/2 mouse, whereas it is comparable between R6/2 and wild-type in the cholinergic and somatostatinergic interneurons. These data support the concept that RAGE is upregulated in the neurodegenerative process of HD, and suggests that its activation is related to the individual vulnerability of the striatal neuronal subtype.

  • Controlled delivery of the heparan sulfate/FGF-2 complex by a polyelectrolyte scaffold promotes maximal hMSC proliferation and differentiation.

    Publication Date: 01/07/2010 on Journal of cellular biochemistry
    by Calarco A, Petillo O, Bosetti M, Torpedine A, Cannas M, Perrone L, Galderisi U, Melone MA, Peluso G
    DOI: 10.1002/jcb.22602

    Growth factors and other regulatory molecules are required to direct differentiation of bone marrow-derived human mesenchymal stem cells (hMSC) along specific lineages. However, the therapeutic use of growth factors is limited by their susceptibility to degradation, and the need to maintain prolonged local release of growth factor at levels sufficient to stimulate hMSC. The aim of this study was to investigate whether a device containing heparan sulfate (HS), which is a co-factor in growth factor-mediated cell proliferation and differentiation, could potentiate and prolong the delivery of fibroblast growth factor-2 (FGF-2) and thus enhance hMSC stimulation. To this aim, we synthesized cationic polyelectrolyte polymers covalently and non-covalently anchored to HS and evaluated their effect on hMSC proliferation. Polymers non-covalently bound to HS resulted in the release of an HS/FGF-2 complex rather than FGF-2 alone. The release of this complex significantly restored hMSC proliferation, which was abolished in serum-free medium and only partially restored by the release of FGF-2 alone as occurred with polymer covalently bound to HS. We also demonstrate that exposure to HS/FGF-2 during early growth but not during post-confluence is essential for hMSC differentiation down the fibroblast lineage, which suggests that both factors are required to establish the correct stem cell commitment that is necessary to support subsequent differentiation. In conclusion, the delivery platform described here is a step towards the development of a new class of biomaterial that enables the prolonged, non-covalent binding and controlled delivery of growth factors and cofactors without altering their potency.

  • Genes involved in regulation of stem cell properties: studies on their expression in a small cohort of neuroblastoma patients.

    Publication Date: 01/07/2009 on Cancer biology & therapy
    by Melone MA, Giuliano M, Squillaro T, Alessio N, Casale F, Mattioli E, Cipollaro M, Giordano A, Galderisi U

    Cancer stem cells have been isolated from many tumors. Several evidences prove that neuroblastoma contains its own stem cell-like cancer cells. We chose to analyze 20 neuroblastoma tumor samples in the expression of 13 genes involved in the regulation of stem cell properties to evaluate if their misregulation could have a clinical relevance. In several specimens we detected the expression of genes belonging to the OCT3/SOX2/NANOG/KLF4 core circuitry that acts at the highest level in regulating stem cell biology. This result is in agreement with studies showing the existence of malignant stem cells in neuroblastoma. We also observed differences in the expression of some stemness-related genes that may be useful for developing new prognostic analyses. In fact, preliminary data suggests that the presence/absence of UTF1 along with differences in BMI1 mRNA levels could distinguish low grade neuroblastomas from IV stage tumors.

  • Identification of novel mutations in the SLC25A15 gene in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome: a clinical, molecular, and functional study.

    Publication Date: 01/05/2009 on Human mutation
    by Tessa A, Fiermonte G, Dionisi-Vici C, Paradies E, Baumgartner MR, Chien YH, Loguercio C, de Baulny HO, Nassogne MC, Schiff M, Deodato F, Parenti G, Rutledge SL, Vilaseca MA, Melone MA, Scarano G, Aldamiz-Echevarría L, Besley G, Walter J, Martinez-Hernandez E, Hernandez JM, Pierri CL, Palmieri F, Santorelli FM
    DOI: 10.1002/humu.20930

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an autosomal recessive disorder of the urea cycle. With the exception of the French-Canadian founder effect, no common mutation has been detected in other populations. In this study, we collected 16 additional HHH cases and expanded the spectrum of SLC25A15/ORC1 mutations. Eleven novel mutations were identified including six new missense and one microrearrangement. We also measured the transport properties of the recombinant purified proteins in reconstituted liposomes for four new and two previously reported missense mutations and proved that the transport activities of these mutant forms of ORC1 were reduced as compared with the wild-type protein; residual activity ranged between 4% and 19%. Furthermore, we designed three-dimensional (3D)-modeling of mutant ORC1 proteins. While modeling the changes in silico allowed us to obtain new information on the pathomechanisms underlying HHH syndrome, we found no clear-cut genotype-phenotype correlations. Although patient metabolic alterations responded well to low-protein therapy, predictions concerning the long-term evolution of HHH syndrome remain uncertain. The preference for a hepatic rather than a neurological presentation at onset also continues, largely, to elude us. Neither modifications in oxidative metabolism-related energy, such as those expected in different mtDNA haplogroups, nor sequence variants in SLC25A2/ORC2 seem to be crucial. Other factors, including protein stability and function, and ORC1-ORC2 structural interactions should be further investigated.

  • Screening of ARHSP-TCC patients expands the spectrum of SPG11 mutations and includes a large scale gene deletion.

    Publication Date: 01/03/2009 on Human mutation
    by Denora PS, Schlesinger D, Casali C, Kok F, Tessa A, Boukhris A, Azzedine H, Dotti MT, Bruno C, Truchetto J, Biancheri R, Fedirko E, Di Rocco M, Bueno C, Malandrini A, Battini R, Sickl E, de Leva MF, Boespflug-Tanguy O, Silvestri G, Simonati A, Said E, Ferbert A, Criscuolo C, Heinimann K, Modoni A, Weber P, Palmeri S, Plasilova M, Pauri F, Cassandrini D, Battisti C, Pini A, Tosetti M, Hauser E, Masciullo M, Di Fabio R, Piccolo F, Denis E, Cioni G, Massa R, Della Giustina E, Calabrese O, Melone MA, De Michele G, Federico A, Bertini E, Durr A, Brockmann K, van der Knaap MS, Zatz M, Filla A, Brice A, Stevanin G, Santorelli FM
    DOI: 10.1002/humu.20945

    Autosomal recessive spastic paraplegia with thinning of corpus callosum (ARHSP-TCC) is a complex form of HSP initially described in Japan but subsequently reported to have a worldwide distribution with a particular high frequency in multiple families from the Mediterranean basin. We recently showed that ARHSP-TCC is commonly associated with mutations in SPG11/KIAA1840 on chromosome 15q. We have now screened a collection of new patients mainly originating from Italy and Brazil, in order to further ascertain the spectrum of mutations in SPG11, enlarge the ethnic origin of SPG11 patients, determine the relative frequency at the level of single Countries (i.e., Italy), and establish whether there is one or more common mutation. In 25 index cases we identified 32 mutations; 22 are novel, including 9 nonsense, 3 small deletions, 4 insertions, 1 in/del, 1 small duplication, 1 missense, 2 splice-site, and for the first time a large genomic rearrangement. This brings the total number of SPG11 mutated patients in the SPATAX collection to 111 cases in 44 families and in 17 isolated cases, from 16 Countries, all assessed using homogeneous clinical criteria. While expanding the spectrum of mutations in SPG11, this larger series also corroborated the notion that even within apparently homogeneous population a molecular diagnosis cannot be achieved without full gene sequencing.

  • RAGE recycles at the plasma membrane in S100B secretory vesicles and promotes Schwann cells morphological changes.

    Publication Date: 01/10/2008 on Journal of cellular physiology
    by Perrone L, Peluso G, Melone MA
    DOI: 10.1002/jcp.21474

    RAGE is a multiligand receptor of the immunoglobulin superfamily involved in regeneration of injured peripheral nerve and cell motility. RAGE is implicated in the development of various chronic diseases, such as neurodegenerative disorders, inflammatory responses, and diabetic complications. The correlation between RAGE endocytic trafficking and RAGE function is still uninvestigated. S100B is one of the ligands of RAGE. The molecular mechanisms responsible of S100B translocation in exocytic vesicles are still poorly investigated. In the present study we elucidate the role of RAGE endocytic trafficking in promoting S100B secretion in Schwann cells. Here we show that RAGE-induced secretion of S100B requires phosphorylated caveolin1-dependent endocytosis of RAGE. Endocytosis of RAGE in response to ligand binding promotes the fusion of endosomes with S100B-positive secretory vesicles. Src promotes the fusion of endosomes with S100B-secretory vesicles. Inhibition of src induces RAGE degradation. RAGE-mediated src activation induces cav1 phosphorylation and relocalization in the perinuclear compartment. RAGE signaling and recycling are required for S100-induced Schwann cells morphological changes and are inhibited by high-glucose, suggesting a possible link between diabetes and peripheral nerve injury. Indeed, high glucose inhibits RAGE-mediated src activation. Src inhibition blocks RAGE recycling, S100B secretion, and morphological changes. In summary, we identified a novel pathway of vesicular trafficking required for the amplification of RAGE signaling and cytoskeleton dynamics that is potentially involved in the regeneration of injured peripheral nerve.

  • A novel KIF5A/SPG10 mutation in spastic paraplegia associated with axonal neuropathy.

    Publication Date: 01/07/2008 on Journal of neurology
    by Tessa A, Silvestri G, de Leva MF, Modoni A, Denora PS, Masciullo M, Dotti MT, Casali C, Melone MA, Federico A, Filla A, Santorelli FM
    DOI: 10.1007/s00415-008-0840-8
  • Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells.

    Publication Date: 15/08/2007 on Journal of cell science
    by Napolitano MA, Cipollaro M, Cascino A, Melone MA, Giordano A, Galderisi U
    DOI: 10.1242/jcs.004002

    Self-renewal, proliferation and differentiation properties of stem cells are controlled by key transcription factors. However, their activity is modulated by chromatin remodeling factors that operate at the highest hierarchical level. Studies on these factors can be especially important to dissect molecular pathways governing the biology of stem cells. SWI/SNF complexes are adenosine triphosphate (ATP)-dependent chromatin remodeling enzymes that have been shown to be required for cell cycle control, apoptosis and cell differentiation in several biological systems. The aim of our research was to investigate the role of these complexes in the biology of mesenchymal stem cells (MSCs). To this end, in MSCs we caused a forced expression of the ATPase subunit of SWI/SNF (Brg1 - also known as Smarca4) by adenoviral transduction. Forced Brg1 expression induced a significant cell cycle arrest of MSCs in culture. This was associated with a huge increase in apoptosis that reached a peak 3 days after transduction. In addition, we observed signs of senescence in cells having ectopic Brg1 expression. At the molecular level these phenomena were associated with activation of Rb- and p53-related pathways. Inhibition of either p53 or Rb with E1A mutated proteins allowed us to hypothesize that both Rb and p53 are indispensable for Brg1-induced senescence, whereas only p53 seems to play a role in triggering programmed cell death. We also looked at the effects of forced Brg1 expression on canonical MSC differentiation in adipocytes, chondrocytes and osteocytes. Brg1 did not induce cell differentiation per se; however, this protein could contribute, at least in part, to the adipocyte differentiation process. In conclusion, our results suggest that whereas some ATP-dependent chromatin remodeling factors, such as ISWI complexes, promote stem cell self-renewal and conservation of an uncommitted state, others cause an escape from 'stemness' and induction of differentiation along with senescence and cell death phenomena.