Francesca Simonelli

Professor of Ophtalmology

Name Francesca
Surname Simonelli
Institution Università degli Studi della Campania Luigi Vanvitelli
E-Mail francesca.simonelli@unicampania.it
Address Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
Francesca Simonelli

Member PUBLICATIONS

  • Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors.

    Publication Date: 01/04/2014 on Gene therapy
    by Colella P, Trapani I, Cesi G, Sommella A, Manfredi A, Puppo A, Iodice C, Rossi S, Simonelli F, Giunti M, Bacci ML, Auricchio A
    DOI: 10.1038/gt.2014.8

    Gene therapy with adeno-associated viral (AAV) vectors is limited by AAV cargo capacity that prevents their application to the inherited retinal diseases (IRDs), such as Stargardt disease (STGD) or Usher syndrome type IB (USH1B), which are due to mutations in genes larger than 5 kb. Trans-splicing or hybrid dual AAV vectors have been successfully exploited to reconstitute large gene expression in the mouse retina. Here, we tested them in the large cone-enriched pig retina that closely mimics the human retina. We found that dual AAV trans-splicing and hybrid vectors transduce pig photoreceptors, the major cell targets for treatment of IRDs, to levels that were about two- to threefold lower than those obtained with a single AAV vector of normal size. This efficiency is significantly higher than that in mice, and is potentially due to the high levels of dual AAV co-transduction we observe in pigs. We also show that subretinal delivery in pigs of dual AAV trans-splicing and hybrid vectors successfully reconstitute, albeit at variable levels, the expression of the large genes ABCA4 and MYO7A mutated in STGD and USH1B, respectively. Our data support the potential of dual AAV vectors for large gene reconstitution in the cone-enriched pig retina that is a relevant preclinical model.

  • Inhibition of ocular aldose reductase by a new benzofuroxane derivative ameliorates rat endotoxic uveitis.

    Publication Date: 01/01/2014 on Mediators of inflammation
    by Di Filippo C, Zippo MV, Maisto R, Trotta MC, Siniscalco D, Ferraro B, Ferraraccio F, La Motta C, Sartini S, Cosconati S, Novellino E, Gesualdo C, Simonelli F, Rossi S, D'Amico M
    DOI: 10.1155/2014/857958

    The study investigated the effects of the aldose reductase (AR) inhibitor benzofuroxane derivative 5(6)-(benzo[d]thiazol-2-ylmethoxy) benzofuroxane (herein referred to as BF-5m) on the biochemical and tissue alterations induced by endotoxic uveitis in rats. BF-5m has been administered directly into the vitreous, in order to assess the expression and levels of (i) inflammatory markers such as the ocular ubiquitin-proteasome system, NF-κB, TNF-α, and MCP-1; (ii) prooxidant and antioxidant markers such as nitrotyrosine, manganese superoxide dismutase (MnSOD), and glutathione peroxidase (GPX); (iii) apoptotic/antiapoptotic factors caspases and Bcl-xl; (iv) markers of endothelial progenitor cells (EPCs) recruitment such as CD34 and CD117. 5 μL of BF-5m (0.01; 0.05; and 0.1 μM) into the right eye decreased in a dose-dependent manner the LPS-induced inflammation of the eye, reporting a clinical score 1. It reduced the ocular levels of ubiquitin, 20S and 26S proteasome subunits, NF-κB subunits, TNF-α, MCP-1, and nitrotyrosine. BF-5m ameliorated LPS-induced decrease in levels of MnSOD and GPX. Antiapoptotic effects were seen from BF-5m by monitoring the expression of Bcl-xl, an antiapoptotic protein. Similarly, BF-5m increased recruitment of the EPCs within the eye, as evidenced by CD34 and CD117 antibodies.

  • Vitreous substitutes: the present and the future.

    Publication Date: 01/01/2014 on BioMed research international
    by Donati S, Caprani SM, Airaghi G, Vinciguerra R, Bartalena L, Testa F, Mariotti C, Porta G, Simonelli F, Azzolini C
    DOI: 10.1155/2014/351804

    Vitreoretinal surgery has advanced in numerous directions during recent years. The removal of the vitreous body is one of the main characteristics of this surgical procedure. Several molecules have been tested in the past to fill the vitreous cavity and to mimic its functions. We here review the currently available vitreous substitutes, focusing on their molecular properties and functions, together with their adverse effects. Afterwards we describe the characteristics of the ideal vitreous substitute. The challenges facing every ophthalmology researcher are to reach a long-term intraocular permanence of vitreous substitute with total inertness of the molecule injected and the control of inflammatory reactions. We report new polymers with gelification characteristics and smart hydrogels representing the future of vitreoretinal surgery. Finally, we describe the current studies on vitreous regeneration and cell cultures to create new intraocular gels with optimal biocompatibility and rheological properties.

  • Combined rod and cone transduction by adeno-associated virus 2/8.

    Publication Date: 01/12/2013 on Human gene therapy
    by Manfredi A, Marrocco E, Puppo A, Cesi G, Sommella A, Della Corte M, Rossi S, Giunti M, Craft CM, Bacci ML, Simonelli F, Surace EM, Auricchio A
    DOI: 10.1089/hum.2013.154

    Gene transfer to both cone and rod photoreceptors (PRs) is essential for gene therapy of inherited retinal degenerations that are caused by mutations in genes expressed in both PR types. Vectors based on the adeno-associated virus (AAV) efficiently transduce PRs of different species. However, these are predominantly rods and little is known about the ability of the AAV to transduce cones in combination with rods. Here we show that AAV2/8 transduces pig cones to levels that are similar to AAV2/9, and the outer nuclear layer (mainly rods) to levels that are on average higher, although not statistically significant, than both AAV2/5 and AAV2/9. We additionally found that the ubiquitous cytomegalovirus (CMV), but not the PR-specific GRK1 promoter, transduced pig cones efficiently, presumably because GRK1 is not expressed in pig cones as observed in mice and humans. Indeed, the GRK1 and CMV promoters transduce a similar percentage of murine cones with the CMV reaching the highest expression levels. Consistent with this, the AAV2/8 vectors with either the CMV or the GRK1 promoter restore cone function in a mouse model of Leber congenital amaurosis type 1 (LCA1), supporting the use of AAV2/8 for gene therapy of LCA1 as well as of other retinal diseases requiring gene transfer to both PR types.

  • Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2.

    Publication Date: 01/06/2013 on Ophthalmology
    by Testa F, Maguire AM, Rossi S, Pierce EA, Melillo P, Marshall K, Banfi S, Surace EM, Sun J, Acerra C, Wright JF, Wellman J, High KA, Auricchio A, Bennett J, Simonelli F
    DOI: 10.1016/j.ophtha.2012.11.048

    The aim of this study was to show the clinical data of long-term (3-year) follow-up of 5 patients affected by Leber congenital amaurosis type 2 (LCA2) treated with a single unilateral injection of adeno-associated virus AAV2-hRPE65v2.

  • Clinical and genetic features in Italian Bietti crystalline dystrophy patients.

    Publication Date: 01/02/2013 on The British journal of ophthalmology
    by Rossi S, Testa F, Li A, Yaylacioğlu F, Gesualdo C, Hejtmancik JF, Simonelli F
    DOI: 10.1136/bjophthalmol-2012-302469

    The aim of the study was to describe the clinical and genetic features of 15 Italian patients with Bietti crystalline dystrophy (BCD).

  • The ADAMTS18 gene is responsible for autosomal recessive early onset severe retinal dystrophy.

    Publication Date: 28/01/2013 on Orphanet journal of rare diseases
    by Peluso I, Conte I, Testa F, Dharmalingam G, Pizzo M, Collin RW, Meola N, Barbato S, Mutarelli M, Ziviello C, Barbarulo AM, Nigro V, Melone MA, , Simonelli F, Banfi S
    DOI: 10.1186/1750-1172-8-16

    Inherited retinal dystrophies, including Retinitis Pigmentosa and Leber Congenital Amaurosis among others, are a group of genetically heterogeneous disorders that lead to variable degrees of visual deficits. They can be caused by mutations in over 100 genes and there is evidence for the presence of as yet unidentified genes in a significant proportion of patients. We aimed at identifying a novel gene for an autosomal recessive form of early onset severe retinal dystrophy in a patient carrying no previously described mutations in known genes.

  • Expression of VEGF-A, Otx homeobox and p53 family genes in proliferative vitreoretinopathy.

    Publication Date: 01/01/2013 on Mediators of inflammation
    by Azzolini C, Pagani IS, Pirrone C, Borroni D, Donati S, Al Oum M, Pigni D, Chiaravalli AM, Vinciguerra R, Simonelli F, Porta G
    DOI: 10.1155/2013/857380

    Proliferative vitreoretinopathy (PVR) is a severe inflammatory complication of retinal detachment. Pathological epiretinal membranes grow on the retina surface leading to contraction, and surgery fails in 5% to 10% of the cases. We evaluated the expression of VEGF-A, Otx1, Otx2, Otx3, and p53 family members from PVR specimens to correlate their role in inducing or preventing the pathology.

  • Recombinant vectors based on porcine adeno-associated viral serotypes transduce the murine and pig retina.

    Publication Date: 01/01/2013 on PloS one
    by Puppo A, Bello A, Manfredi A, Cesi G, Marrocco E, Della Corte M, Rossi S, Giunti M, Bacci ML, Simonelli F, Surace EM, Kobinger GP, Auricchio A
    DOI: 10.1371/journal.pone.0059025

    Recombinant adeno-associated viral (AAV) vectors are known to safely and efficiently transduce the retina. Among the various AAV serotypes available, AAV2/5 and 2/8 are the most effective for gene transfer to photoreceptors (PR), which are the most relevant targets for gene therapy of inherited retinal degenerations. However, the search for novel AAV serotypes with improved PR transduction is ongoing. In this work we tested vectors derived from five AAV serotypes isolated from porcine tissues (referred to as porcine AAVs, four of which are newly identified) for their ability to transduce both the murine and the cone-enriched pig retina. Porcine AAV vectors expressing EGFP under the control of the CMV promoter were injected subretinally either in C57BL/6 mice or Large White pigs. The resulting retinal tropism was analyzed one month later on histological sections, while levels of PR transduction were assessed by Western blot. Our results show that all porcine AAV transduce murine and porcine retinal pigment epithelium and PR upon subretinal administration. AAV2/po1 and 2/po5 are the most efficient porcine AAVs for murine PR transduction and exhibit the strongest tropism for pig cone PR. The levels of PR transduction obtained with AAV2/po1 and 2/po5 are similar, albeit not superior, to those obtained with AAV2/5 and AAV2/8, which evinces AAV2/po1 and 2/po5 to be promising vectors for retinal gene therapy.

  • Subretinal Fibrosis in Stargardt's Disease with Fundus Flavimaculatus and ABCA4 Gene Mutation.

    Publication Date: 01/09/2012 on Case reports in ophthalmology
    by Rossi S, Testa F, Attanasio M, Orrico A, de Benedictis A, Corte MD, Simonelli F
    DOI: 10.1159/000345415

    To report on 4 patients affected by Stargardt's disease (STGD) with fundus flavimaculatus (FFM) and ABCA4 gene mutation associated with subretinal fibrosis.