-
Publication Date:
21/12/2017
on JCI insight
by Botta S, de Prisco N, Marrocco E, Renda M, Sofia M, Curion F, Bacci ML, Ventrella D, Wilson C, Gesualdo C, Rossi S, Simonelli F, Surace EM
DOI: 10.1172/jci.insight.96560
The genome-wide activity of transcription factors (TFs) on multiple regulatory elements precludes their use as gene-specific regulators. Here we show that ectopic expression of a TF in a cell-specific context can be used to silence the expression of a specific gene as a therapeutic approach to regulate gene expression in human disease. We selected the TF Krüppel-like factor 15 (KLF15) based on its putative ability to recognize a specific DNA sequence motif present in the rhodopsin (RHO) promoter and its lack of expression in terminally differentiated rod photoreceptors (the RHO-expressing cells). Adeno-associated virus (AAV) vector-mediated ectopic expression of KLF15 in rod photoreceptors of pigs enables Rho silencing with limited genome-wide transcriptional perturbations. Suppression of a RHO mutant allele by KLF15 corrects the phenotype of a mouse model of retinitis pigmentosa with no observed toxicity. Cell-specific-context conditioning of TF activity may prove a novel mode for somatic gene-targeted manipulation.
-
Publication Date:
05/12/2017
on Molecular therapy : the journal of the American Society of Gene Therapy
by Maddalena A, Tornabene P, Tiberi P, Minopoli R, Manfredi A, Mutarelli M, Rossi S, Simonelli F, Naggert JK, Cacchiarelli D, Auricchio A
DOI: 10.1016/j.ymthe.2017.11.019
Retinal gene transfer with adeno-associated viral (AAV) vectors holds great promise for the treatment of inherited retinal degenerations (IRDs). One limit of AAV is its transfer capacity of about 5 kb, which can be expanded to about 9 kb, using dual AAV vectors. This strategy would still not suffice for treatment of IRDs such as Usher syndrome type 1D or Alström syndrome type I (ALMS) due to mutations in CDH23 or ALMS1, respectively. To overcome this limitation, we generated triple AAV vectors, with a maximal transfer capacity of about 14 kb. Transcriptomic analysis following triple AAV transduction showed the expected full-length products along a number of aberrant transcripts. However, only the full-length transcripts are efficiently translated in vivo. We additionally showed that approximately 4% of mouse photoreceptors are transduced by triple AAV vectors and showed correct localization of recombinant ALMS1. The low-photoreceptor transduction levels might justify the modest and transient improvement we observe in the retina of a mouse model of ALMS. However, the levels of transduction mediated by triple AAV vectors in pig retina reached 40% of those observed with single vectors, and this bodes well for further improving the efficiency of triple AAV vectors in the retina.
-
Publication Date:
28/11/2017
on International ophthalmology
by Rossi S, Santamaria C, Boccia R, De Rosa L, D'Alterio FM, Simonelli F, De Rosa G
DOI: 10.1007/s10792-017-0772-3
To evaluate the clinical results of standard, transepithelial (TE) and iontophoresis (I) corneal cross-linking (CXL), in patients with progressive keratoconus.
-
Publication Date:
20/10/2017
on Genes
by Di Iorio V, Karali M, Brunetti-Pierri R, Filippelli M, Di Fruscio G, Pizzo M, Mutarelli M, Nigro V, Testa F, Banfi S, Simonelli F
DOI: 10.3390/genes8100280
We performed a clinical and genetic characterization of a pediatric cohort of patients with inherited retinal dystrophy (IRD) to identify the most suitable cases for gene therapy. The cohort comprised 43 patients, aged between 2 and 18 years, with severe isolated IRD at the time of presentation. The ophthalmological characterization also included assessment of the photoreceptor layer integrity in the macular region (ellipsoid zone (EZ) band). In parallel, we carried out a targeted, next-generation sequencing (NGS)-based analysis using a panel that covers over 150 genes with either an established or a candidate role in IRD pathogenesis. Based on the ophthalmological assessment, the cohort was composed of 24 Leber congenital amaurosis, 14 early onset retinitis pigmentosa, and 5 achromatopsia patients. We identified causative mutations in 58.1% of the cases. We also found novel genotype-phenotype correlations in patients harboring mutations in the CEP290 and CNGB3 genes. The EZ band was detectable in 40% of the analyzed cases, also in patients with genotypes usually associated with severe clinical manifestations. This study provides the first detailed clinical-genetic assessment of severe IRDs with infantile onset and lays the foundation of a standardized protocol for the selection of patients that are more likely to benefit from gene replacement therapeutic approaches.
-
Publication Date:
26/08/2017
on Lancet (London, England)
by Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, Wittes J, Pappas J, Elci O, McCague S, Cross D, Marshall KA, Walshire J, Kehoe TL, Reichert H, Davis M, Raffini L, George LA, Hudson FP, Dingfield L, Zhu X, Haller JA, Sohn EH, Mahajan VB, Pfeifer W, Weckmann M, Johnson C, Gewaily D, Drack A, Stone E, Wachtel K, Simonelli F, Leroy BP, Wright JF, High KA, Maguire AM
DOI: 10.1016/S0140-6736(17)31868-8
Phase 1 studies have shown potential benefit of gene replacement in RPE65-mediated inherited retinal dystrophy. This phase 3 study assessed the efficacy and safety of voretigene neparvovec in participants whose inherited retinal dystrophy would otherwise progress to complete blindness.
-
Publication Date:
13/07/2017
on Ophthalmic genetics
by Testa F, Melillo P, Rossi S, Marcelli V, de Benedictis A, Colucci R, Gallo B, Brunetti-Pierri R, Donati S, Azzolini C, Marciano E, Simonelli F
DOI: 10.1080/13816810.2017.1329445
To investigate the prevalence of macular abnormalities in patients affected by Usher syndrome (USH), by comparing the clinical findings between two types (i.e., USH1 and USH2).
-
Publication Date:
02/05/2017
on IEEE journal of translational engineering in health and medicine
by Melillo P, Riccio D, Di Perna L, Sanniti Di Baja G, De Nino M, Rossi S, Testa F, Simonelli F, Frucci M
DOI: 10.1109/JTEHM.2017.2679746
Color vision deficiency (CVD) is an extremely frequent vision impairment that compromises the ability to recognize colors. In order to improve color vision in a subject with CVD, we designed and developed a wearable improved vision system based on an augmented reality device. The system was validated in a clinical pilot study on 24 subjects with CVD (18 males and 6 females, aged 37.4 ± 14.2 years). The primary outcome was the improvement in the Ishihara Vision Test score with the correction proposed by our system. The Ishihara test score significantly improved ([Formula: see text]) from 5.8 ± 3.0 without correction to 14.8 ± 5.0 with correction. Almost all patients showed an improvement in color vision, as shown by the increased test scores. Moreover, with our system, 12 subjects (50%) passed the vision color test as normal vision subjects. The development and preliminary validation of the proposed platform confirm that a wearable augmented-reality device could be an effective aid to improve color vision in subjects with CVD.
-
Publication Date:
01/05/2017
on European journal of human genetics : EJHG
by Testa F, Filippelli M, Brunetti-Pierri R, Di Fruscio G, Di Iorio V, Pizzo M, Torella A, Barillari MR, Nigro V, Brunetti-Pierri N, Simonelli F, Banfi S
DOI: 10.1038/ejhg.2017.23
Mutations in the PCYT1A gene have been recently linked to two different phenotypes: one characterized by spondylometaphyseal dysplasia and cone-rod dystrophy (SMD-CRD) and the other by congenital lipodystrophy, severe fatty liver disease, and reduced HDL cholesterol without any retinal or skeletal involvement. Here, we identified, by next generation sequencing, sequence variants affecting function in the PCYT1A gene in three young patients with isolated retinal dystrophy from two different Italian families. A thorough clinical evaluation of the patients, with whole skeleton X-ray, metabolic assessment and liver ultrasound failed to reveal signs of skeletal dysplasia, metabolic and hepatic alterations. This is the first report showing that the PCYT1A gene can be responsible for isolated forms of retinal dystrophy, particularly without any skeletal involvement, thus further expanding the phenotypic spectrum induced by mutations in this gene.
-
Publication Date:
23/03/2017
on PloS one
by Melillo P, Orrico A, Chirico F, Pecchia L, Rossi S, Testa F, Simonelli F
DOI: 10.1371/journal.pone.0174083
To develop and validate a tool aiming to support ophthalmologists in identifying, during routine ophthalmologic visits, patients at higher risk of falling in the following year.
-
Publication Date:
01/02/2017
on BMC medical genetics
by Esposito G, Testa F, Zacchia M, Crispo AA, Di Iorio V, Capolongo G, Rinaldi L, D'Antonio M, Fioretti T, Iadicicco P, Rossi S, Franzè A, Marciano E, Capasso G, Simonelli F, Salvatore F
DOI: 10.1186/s12881-017-0372-0
Bardet-Biedl syndrome (BBS) is a rare genetic disorder that features retinal degeneration, obesity, polydactyly, learning disabilities and renal abnormalities. The diagnosis is often missed at birth, the median age at diagnosis being 9 years. In the attempt to shed light on BBS and improve its diagnosis and treatment, we evaluated the genotype-phenotype relationship in patients with a molecular diagnosis of BBS.