Daniela Montesarchio

Professor of Organic Chemistry

Name Daniela
Surname Montesarchio
Institution Università di Napoli Federico II
E-Mail montesar@unina.it
Address Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, 80126, Napoli, Italy
Resume Download
Daniela Montesarchio

Member PUBLICATIONS

  • Exploring cellular uptake, accumulation and mechanism of action of a cationic Ru-based nanosystem in human preclinical models of breast cancer.

    Publication Date: 07/05/2019 on Scientific reports
    by Piccolo M, Misso G, Ferraro MG, Riccardi C, Capuozzo A, Zarone MR, Maione F, Trifuoggi M, Stiuso P, D'Errico G, Caraglia M, Paduano L, Montesarchio D, Irace C, Santamaria R
    DOI: 10.1038/s41598-019-43411-3

    According to WHO, breast cancer incidence is increasing so that the search for novel chemotherapeutic options is nowadays an essential requirement to fight neoplasm subtypes. By exploring new effective metal-based chemotherapeutic strategies, many ruthenium complexes have been recently proposed as antitumour drugs, showing ability to impact on diverse cellular targets. In the framework of different molecular pathways leading to cell death in human models of breast cancer, here we demonstrate autophagy involvement behind the antiproliferative action of a ruthenium(III)-complex incorporated into a cationic nanosystem (HoThyRu/DOTAP), proved to be hitherto one of the most effective within the suite of nucleolipidic formulations we have developed for the in vivo transport of anticancer ruthenium(III)-based drugs. Indeed, evidences are implicating autophagy in both cancer development and therapy, and anticancer interventions endowed with the ability to trigger this biological response are currently considered attractive oncotherapeutic approaches. Moreover, crosstalk between apoptosis and autophagy, regulated by finely tuned metallo-chemotherapeutics, may provide novel opportunities for future improvement of cancer treatment. Following this line, our in vitro and in vivo preclinical investigations suggest that an original strategy based on suitable formulations of ruthenium(III)-complexes, inducing sustained cell death, could open new opportunities for breast cancer treatment, including the highly aggressive triple-negative subtype.

  • The role of G-quadruplex structures of LIGS-generated aptamers R1.2 and R1.3 in IgM specific recognition.

    Publication Date: 22/04/2019 on International journal of biological macromolecules
    by Moccia F, Platella C, Musumeci D, Batool S, Zumrut H, Bradshaw J, Mallikaratchy P, Montesarchio D
    DOI: 10.1016/j.ijbiomac.2019.04.141

    Exploiting a variant of SELEX called "Ligand-Guided Selection" (LI-GS), we recently identified two novel truncated G-rich aptamers, called R1.2 and R1.3, specific for membrane-bound IgM (mIgM), the hallmark of B cells. Herein, the conformational behaviour of these aptamers has been analysed by multiple biophysical methods. In order to investigate their functional secondary structures, these studies have been carried out in pseudo-physiological buffers mimicking different cellular environments. Both aptamers proved to be highly polymorphic, folding into stable, unimolecular G-quadruplex structures in K-rich buffers. In turn, in buffered solutions containing Na/Mg ions, R1.2 and R1.3 formed mainly duplex structures. Remarkably, these aptamers were able to effectively bind mIgM on B-cell lymphoma exclusively in the presence of potassium ions. These findings demonstrate the key role of G-quadruplex folding in the molecular recognition and efficient binding of R1.2 and R1.3 to mIgM expressed in lymphoma and leukemia cells, providing a precious rational basis for the design of effective aptamer-based biosensors potentially useful for the detection of cancer-relevant biomarkers.

  • Stability is not everything the case of the cyclization of the thrombin binding aptamer.

    Publication Date: 12/03/2019 on Chembiochem : a European journal of chemical biology
    by Riccardi C, Meyer A, Vasseur JJ, Russo Krauss I, Paduano L, Oliva R, Petraccone L, Morvan F, Montesarchio D
    DOI: 10.1002/cbic.201900045

    Aiming at novel approaches to obtain improved aptamers, we developed a cyclic TBA analogue (cycTBA) by exploiting a Cu(I)-assisted azide-alkyne cycloaddition. Its markedly increased serum resistance and exceptional thermal stability of its G-quadruplex vs. TBA were associated to halved thrombin inhibition, suggesting that some flexibility in TBA structure is necessary for protein recognition.

  • Benzodifurans for biomedical applications: BZ4, a selective anti-proliferative and anti-amyloid lead compound.

    Publication Date: 25/02/2019 on Future medicinal chemistry
    by Vicidomini C, Cioffi F, Broersen K, Roviello V, Riccardi C, Montesarchio D, Capasso D, Gaetano SD, Musumeci D, Roviello GN
    DOI: 10.4155/fmc-2018-0473

    Our goal is to evaluate benzodifuran-based scaffolds for biomedical applications.

  • On the pH-Modulated Ru-Based Prodrug Activation Mechanism.

    Publication Date: 07/01/2019 on Inorganic chemistry
    by Caterino M, Herrmann M, Merlino A, Riccardi C, Montesarchio D, Mroginski MA, Musumeci D, Ruffo F, Paduano L, Hildebrandt P, Kozuch J, Vergara A
    DOI: 10.1021/acs.inorgchem.8b02667

    The Ru-based prodrug AziRu efficiently binds to proteins, but the mechanism of its release is still disputed. Herein, in order to test the hypothesis of a reduction-mediated Ru release from proteins, a Raman-assisted crystallographic study on AziRu binding to a model protein (hen egg white lysozyme), in two different oxidation states, Ru and Ru, was carried out. Our results indicate Ru reduction, but the Ru release upon reduction is dependent on the reducing agent. To better understand this process, a pH-dependent, spectroelectrochemical surface-enhanced Raman scattering (SERS) study was performed also on AziRu-functionalized Au electrodes as a surrogate and simplest model system of Ru- and Ru-based drugs. This SERS study provided a p K of 6.0 ± 0.4 for aquated AziRu in the Ru state, which falls in the watershed range of pH values separating most cancer environments from their physiological counterparts. These experiments also indicate a dramatic shift of the redox potential E by >600 mV of aquated AziRu toward more positive potentials upon acidification, suggesting a selective AziRu reduction in cancer lumen but not in healthy ones. It is expected that the nature of the ligands (e.g., pyridine vs imidazole, present in well-known Ru complex NAMI-A) will modulate the p K and E, without affecting the underlying reaction mechanism.

  • Tailoring a lead-like compound targeting multiple G-quadruplex structures.

    Publication Date: 27/11/2018 on European journal of medicinal chemistry
    by Amato J, Platella C, Iachettini S, Zizza P, Musumeci D, Cosconati S, Pagano A, Novellino E, Biroccio A, Randazzo A, Pagano B, Montesarchio D
    DOI: 10.1016/j.ejmech.2018.11.058

    A focused library of analogs of a lead-like G-quadruplex (G4) targeting compound (4), sharing a furobenzoxazine naphthoquinone core and differing for the pendant groups on the N-atom of the oxazine ring, has been here analyzed with the aim of developing more potent and selective ligands. These molecules have been tested vs. topologically different G4s by the G4-CPG assay, an affinity chromatography-based method for screening putative G4 ligands. The obtained results showed that all these compounds were able to bind several G4 structures, both telomeric and extra-telomeric, thus behaving as multi-target ligands, and two of them fully discriminated G4 vs. duplex DNA. Biological assays proved that almost all the compounds produced effective DNA damage, showing marked antiproliferative effects on tumor cells in the low μM range. Combined analysis of the G4-CPG binding assays and biological data led us to focus on compound S4-5, proved to be less cytotoxic than the parent compound 4 on normal cells. An in-depth biophysical characterization of the binding of S4-5 to different G4s showed that the here identified ligand has higher affinity for the G4s and higher ability to discriminate G4 vs. duplex DNA than 4. Molecular docking studies, in agreement with the NMR data, suggest that S4-5 interacts with the accessible grooves of the target G4 structures, giving clues for its increased G4 vs. duplex selectivity.

  • Controlled Pore Glass-based oligonucleotide affinity support: towards High Throughput Screening methods for the identification of conformation-selective G-quadruplex ligands.

    Publication Date: 07/11/2018 on Analytica chimica acta
    by Platella C, Musumeci D, Arciello A, Doria F, Freccero M, Randazzo A, Amato J, Pagano B, Montesarchio D
    DOI: 10.1016/j.aca.2018.04.071

    Target selectivity is one of the main challenges in the search for small molecules able to act as effective and non-toxic anticancer and/or antiviral drugs. To achieve this goal, handy, rapid and reliable High Throughput Screening methodologies are needed. We here describe a novel functionalization for the solid phase synthesis of oligonucleotides on Controlled Pore Glass, including a flexible hexaethylene glycol spacer linking the first nucleoside through the nucleobase via a covalent bond stable to the final deprotection step. This allowed us preparing fully deprotected oligonucleotides still covalently attached to their supports. In detail, on this support we performed both the on-line synthesis of different secondary structure-forming oligonucleotides and the affinity chromatography-based screenings of conformation-selective G-quadruplex ligands. By using a fluorescent core-extended naphthalene diimide with different emitting response upon binding to sequences folding into G-quadruplexes of different topologies, we have been able to discriminate not only G-quadruplex vs. duplex DNA structures, but also different G-quadruplex conformations on the glass beads by confocal microscopy.

  • Exploring the conformational behaviour and aggregation properties of lipid-conjugated AS1411 aptamers.

    Publication Date: 15/10/2018 on International journal of biological macromolecules
    by Riccardi C, Musumeci D, Russo Krauss I, Piccolo M, Irace C, Paduano L, Montesarchio D
    DOI: 10.1016/j.ijbiomac.2018.06.137

    AS1411 is a nucleolin-binding aptamer which attracted great interest as active targeting ligand for the selective delivery of therapeutic agents to tumour cells. In this work we selected three AS1411 derivatives 5'-conjugated with lipophilic tails and studied their properties in view of their application in liposomial formulations and/or lipid coated-nanoparticles for targeted therapies. The conformational behaviour of these AS1411 analogs has been investigated in comparison with the unmodified aptamer by CD, UV, PAGE, SEC-HPLC, DLS and thioflavin T (ThT) fluorescence assays to get insight in their secondary structure and aggregation properties. This study has been performed in pseudo-physiological buffers mimicking the extra- and intracellular environments, and at different concentrations in the μM range, paying special attention to the effects of the lipophilic tail on the overall aptamer conformation. The 5'-lipidated AS1411 derivatives proved to fold into stable, parallel unimolecular G-quadruplex structures, forming large aggregates, mainly micelles, at conc. >10 μM. Preliminary bioscreenings on selected cancer cells showed that these derivatives are less cytotoxic than AS1411, but maintain a similar biological behaviour. This study demonstrated that lipophilic tails dramatically favour the formation of AS1411 aggregates, however not impairing the formation and thermal stability of its peculiar G4 motifs.

  • Anti-HIV activity of new higher order G-quadruplex aptamers obtained from tetra-end-linked oligonucleotides.

    Publication Date: 28/03/2018 on Organic & biomolecular chemistry
    by Nici F, Oliviero G, Falanga AP, D'Errico S, Marzano M, Musumeci D, Montesarchio D, Noppen S, Pannecouque C, Piccialli G, Borbone N
    DOI: 10.1039/C7OB02346D

    By combining the ability of short G-rich oligodeoxyribonucleotides (ODNs) containing the sequence 5'CGGA3' to form higher order G-quadruplex (G4) complexes with the tetra-end-linked (TEL) concept to produce aptamers targeting the HIV envelope glycoprotein 120 (gp120), three new TEL-ODNs (1-3) having the sequence 5'CGGAGG3' were synthesized with the aim of studying the effect of G4 dimerization on their anti-HIV activity. Furthermore, in order to investigate the effect of the groups at the 5' position, the 5' ends of 1-3 were left uncapped (1) or capped with either the lipophilic dimethoxytrityl (DMT) (2) or the hydrophilic glucosyl-4-phosphate (3) moieties. The here reported results demonstrate that only the DMT-substituted TEL-ODN 2 is effective in protecting human MT-4 cell cultures from HIV infection (76% max protection), notwithstanding all the three new aptamers proved to be capable of forming stable higher order dimeric G4s when annealed in K+-containing buffer, thus suggesting that the recognition of a hydrophobic pocket on the target glycoprotein by the aptamers represents a main structural feature for triggering their anti-HIV activity.

  • Huntingtin protein: A new option for fixing the Huntington's disease countdown clock.

    Publication Date: 08/03/2018 on Neuropharmacology
    by Caterino M, Squillaro T, Montesarchio D, Giordano A, Giancola C, Melone MAB
    DOI: 10.1016/j.neuropharm.2018.03.009

    Huntington's disease is a dreadful, incurable disorder. It springs from the autosomal dominant mutation in the first exon of the HTT gene, which encodes for the huntingtin protein (HTT) and results in progressive neurodegeneration. Thus far, all the attempted approaches to tackle the mutant HTT-induced toxicity causing this disease have failed. The mutant protein comes with the aberrantly expanded poly-glutamine tract. It is primarily to blame for the build-up of β-amyloid-like HTT aggregates, deleterious once broadened beyond the critical ∼35-37 repeats threshold. Recent experimental findings have provided valuable information on the molecular basis underlying this HTT-driven neurodegeneration. These findings indicate that the poly-glutamine siding regions and many post-translation modifications either abet or counter the poly-glutamine tract. This review provides an overall, up-to-date insight into HTT biophysics and structural biology, particularly discussing novel pharmacological options to specifically target the mutated protein and thus inhibit its functions and toxicity.