Daniela Montesarchio

Professor of Organic Chemistry

Name Daniela
Surname Montesarchio
Institution Università di Napoli Federico II
E-Mail montesar@unina.it
Address Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, 80126, Napoli, Italy
Resume Download
Daniela Montesarchio


  • A first-in-class and a fished out anticancer platinum compound: cis-[PtCl2(NH3)2] and cis-[PtI2(NH3)2] compared for their reactivity towards DNA model systems.

    Publication Date: 28/05/2016 on Dalton transactions (Cambridge, England : 2003)
    by Musumeci D, Platella C, Riccardi C, Merlino A, Marzo T, Massai L, Messori L, Montesarchio D
    DOI: 10.1039/c6dt00294c

    Contrary to what was believed for many years, cis-PtI2(NH3)2, the diiodido analogue of cisplatin, displays high in vitro antiproliferative activity toward a set of tumour cell lines, overcoming resistance to cisplatin in a platinum-resistant cancer cell line. In the context of a general reappraisal of iodinated Pt(ii) derivatives, aiming at a more systematic evaluation of their chemical and biological profiles, here we report on the reactivity of cis-PtI2(NH3)2 with selected DNA model systems, in single, double strand or G-quadruplex form, using cisplatin as a control. A combined approach has been exploited in this study, including circular dichroism (CD), UV-visible spectroscopy and electrospray mass spectrometry (ESI-MS) analyses. The data reveal that cis-PtI2(NH3)2 shows an overall reactivity towards the investigated oligonucleotides significantly higher than cisplatin.

  • Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications.

    Publication Date: 21/05/2016 on Nanoscale
    by Luchini A, Irace C, Santamaria R, Montesarchio D, Heenan RK, Szekely N, Flori A, Menichetti L, Paduano L
    DOI: 10.1039/c5nr08486e

    Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are performing contrast agents for Magnetic Resonance Imaging (MRI). A functionalization strategy for SPIONs based on hydrophobic interactions is a versatile approach easily extendable to several kinds of inorganic nanoparticles and suitable for obtaining stable and biocompatible systems. Here we report on the original preparation of functionalized SPIONs with an 8 nm radius exploiting the hydrophobic interaction between a phosphocholine and an inner amphiphilic. With respect to other similarly functionalized SPIONs, characterized by the typical nanoparticle clustering that leads to large aggregates, our phosphocholine-decorated SPIONs are demonstrated to be monodisperse. We report the in vitro and in vivo study that proves the effective applicability of phosphocholine-decorated SPIONs as MRI contrast agents. The versatility of this functionalization approach is highlighted by introducing on the SPION surface a ruthenium-based potential antitumoral drug, named ToThyCholRu. Even if in this case we observed the formation of SPION clusters, ascribable to the presence of the amphiphilic ruthenium complex, interesting and promising antiproliferative activity points at the ToThyCholRu-decorated SPIONs as potential theranostic agents.

  • G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.

    Publication Date: 22/09/2015 on Molecules (Basel, Switzerland)
    by Musumeci D, Riccardi C, Montesarchio D
    DOI: 10.3390/molecules200917511

    Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.

  • Interaction of anticancer Ru(III) complexes with single stranded and duplex DNA model systems.

    Publication Date: 21/08/2015 on Dalton transactions (Cambridge, England : 2003)
    by Musumeci D, Rozza L, Merlino A, Paduano L, Marzo T, Massai L, Messori L, Montesarchio D
    DOI: 10.1039/c5dt01105a

    The interaction of the anticancer Ru(iii) complex AziRu - in comparison with its analogue NAMI-A, currently in advanced clinical trials as an antimetastatic agent - with DNA model systems, both single stranded and duplex oligonucleotides, was investigated using a combined approach, including absorption UV-vis spectroscopy, circular dichroism (CD) and electrospray mass spectrometry (ESI-MS) techniques. UV-vis absorption spectra of the Ru complexes were recorded at different times in a pseudo-physiological solution, to monitor the ligand exchange processes in the absence and in the presence of the examined oligonucleotides. CD experiments provided information on the overall conformational changes of the DNA model systems induced by these metal complexes. UV- and CD-monitored thermal denaturation studies were performed to analyse the effects of AziRu and NAMI-A on the stability of the duplex structures. ESI-MS experiments, carried out on the oligonucleotide/metal complex mixtures under investigation, allowed us to detect the formation of stable adducts between the guanine-containing oligomers and the ruthenium complexes. These data unambiguously demonstrate that both AziRu and NAMI-A can interact with the DNA model systems. Although very similar in their structures, the two metal compounds manifest a markedly different reactivity with the examined sequences, respectively, with either a naked Ru(3+) ion or a Ru(Im)(3+) (Im = imidazole) fragment being incorporated into the oligonucleotide structure via stable linkages.

  • Guanine-based amphiphiles: synthesis, ion transport properties and biological activity.

    Publication Date: 01/03/2015 on Bioorganic & medicinal chemistry
    by Musumeci D, Irace C, Santamaria R, Milano D, Tecilla P, Montesarchio D
    DOI: 10.1016/j.bmc.2014.12.055

    Novel amphiphilic guanine derivatives, here named Gua1 and Gua2, have been prepared through few, simple and efficient synthetic steps. In ion transport experiments through phospholipid bilayers, carried out to evaluate their ability to mediate H(+) transport, Gua2 showed high activity. When this compound was investigated for ion-selective transport activities, no major differences were observed in the behaviour with cations while, in the case of anions, selective activity was observed in the series I(-)>Br(-)>Cl(-)>F(-). The bioactivity of these guanine analogues has been evaluated on a panel of human tumour and non-tumour cell lines in preliminary in vitro cytotoxicity assays, showing a relevant antiproliferative profile for Gua2.

  • Developing functionalized Fe3O4-Au nanoparticles: a physico-chemical insight.

    Publication Date: 28/02/2015 on Physical chemistry chemical physics : PCCP
    by Luchini A, Vitiello G, Rossi F, Ruiz De Ballesteros O, Radulescu A, D'Errico G, Montesarchio D, de Julián Fernández C, Paduano L
    DOI: 10.1039/c4cp05854b

    Nanotechnology for biomedicine has recently attracted increasing interest from the scientific community. In particular, among the different nanodevices suitable for this application, multifunctionalizable hybrid nanoparticles are one of the most investigated research topics. Here we present a detailed physico-chemical characterization of hybrid magneto-plasmonic iron oxide-gold nanoparticles (NPs) with core-shell structure. In particular, we underline all the synthetic difficulties concerning the preparation of these systems. Based on all our results, after different tests of a commonly reported protocol for the synthesis of the core-shell system, we believe that several issues are still open in the synthetic preparation of these particular NPs. Indeed, at least for the conditions that we adopted, core-shell morphology nanoparticles cannot be produced. However, independent of the core structure, we describe here an optimized and efficient functionalization protocol to obtain stable nanoparticle aqueous suspensions, which can be easily exported to other kinds of metal and metal-oxide NPs and used to develop biocompatible systems. Furthermore, reliable information that could be useful for researchers working in this field is extensively discussed.

  • G-quadruplex on oligo affinity support (G4-OAS): an easy affinity chromatography-based assay for the screening of G-quadruplex ligands.

    Publication Date: 06/05/2014 on Analytical chemistry
    by Musumeci D, Amato J, Randazzo A, Novellino E, Giancola C, Montesarchio D, Pagano B
    DOI: 10.1021/ac500444m

    A simple, cheap, and highly reproducible affinity chromatography-based method has been developed for the screening of G-quadruplex binders. The tested compounds were flowed through a polystyrene resin functionalized with an oligonucleotide able to form, in proper conditions, a G-quadruplex structure. Upon cation-induced control of the folding/unfolding processes of the immobilized G-quadruplex-forming sequence, small molecules specifically interacting with the oligonucleotide structure were first captured and then released depending on the used working solution. This protocol, first optimized for different kinds of known G-quadruplex ligands and then applied to a set of putative ligands, has allowed one to fully reuse the same functionalized resin batch, recycled for several tens of experiments without loss in efficiency and reproducibility.

  • An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies.

    Publication Date: 01/03/2014 on Pharmacology & therapeutics
    by Musumeci D, Roviello GN, Montesarchio D
    DOI: 10.1016/j.pharmthera.2013.11.001

    HMGB1 (High-Mobility Group Box-1) is a nuclear protein that acts as an architectural chromatin-binding factor involved in the maintenance of nucleosome structure and regulation of gene transcription. It can be released into the extracellular milieu from immune and non-immune cells in response to various stimuli. Extracellular HMGB1 contributes to the pathogenesis of numerous chronic inflammatory and autoimmune diseases, including sepsis, rheumatoid arthritis, atherosclerosis, chronic kidney disease, systemic lupus erythematosus (SLE), as well as cancer pathogenesis. Interaction of released HMGB1 with the cell-surface receptor for advanced glycation end products (RAGE) is one of the main signaling pathways triggering these diseases. It has been also demonstrated that the inhibition of the HMGB1-RAGE interaction represents a promising approach for the modulation of the inflammatory and tumor-facilitating activity of HMGB1. In this review we describe various approaches recently proposed in the literature to inhibit HMGB1 and the related inflammatory processes, especially focusing on the block of RAGE-HMGB1 signaling. Several strategies are based on molecules which mainly interact with RAGE as competitive antagonists of HMGB1. As an alternative, encouraging results have been obtained with HMGB1-targeting, leading to the identification of compounds that directly bind to HMGB1, ranging from small natural or synthetic molecules, such as glycyrrhizin and gabexate mesilate, to HMGB1-specific antibodies, peptides, proteins as well as bent DNA-based duplexes. Future perspectives are discussed in the light of the overall body of knowledge acquired by a large number of research groups operating in different but related fields.

  • A new design for nucleolipid-based Ru(III) complexes as anticancer agents.

    Publication Date: 28/12/2013 on Dalton transactions (Cambridge, England : 2003)
    by Montesarchio D, Mangiapia G, Vitiello G, Musumeci D, Irace C, Santamaria R, D'Errico G, Paduano L
    DOI: 10.1039/c3dt52320a

    In continuation with our studies concerning the synthesis, characterization and biological evaluation of nucleolipidic Ru(III) complexes, a novel design for this family of potential anticancer agents is presented here. As a model compound, a new uridine-based nucleolipid has been prepared, named HoUrRu, following a simple and versatile synthetic procedure, and converted into a Ru(III) salt. Stable formulations of this highly functionalized Ru(III) complex have been obtained by co-aggregation with either the zwitterionic lipid POPC or the cationic DOTAP, which have been subjected to an in-depth microstructural characterization, including DLS, SANS and EPR measurements. The in vitro bioactivity profile of HoUrRu, as a pure compound or in formulation with POPC or DOTAP, reveals high antiproliferative activity against MCF-7 and WiDr human cancer cell lines.

  • Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.

    Publication Date: 17/12/2013 on Accounts of chemical research
    by De Riccardis F, Izzo I, Montesarchio D, Tecilla P
    DOI: 10.1021/ar4000136

    The ion-coupled processes that occur in the plasma membrane regulate the cell machineries in all the living organisms. The details of the chemical events that allow ion transport in biological systems remain elusive. However, investigations of the structure and function of natural and artificial transporters has led to increasing insights about the conductance mechanisms. Since the publication of the first successful artificial system by Tabushi and co-workers in 1982, synthetic chemists have designed and constructed a variety of chemically diverse and effective low molecular weight ionophores. Despite their relative structural simplicity, ionophores must satisfy several requirements. They must partition in the membrane, interact specifically with ions, shield them from the hydrocarbon core of the phospholipid bilayer, and transport ions from one side of the membrane to the other. All these attributes require amphipathic molecules in which the polar donor set used for ion recognition (usually oxygens for cations and hydrogen bond donors for anions) is arranged on a lipophilic organic scaffold. Playing with these two structural motifs, donor atoms and scaffolds, researchers have constructed a variety of different ionophores, and we describe a subset of interesting examples in this Account. Despite the ample structural diversity, structure/activity relationships studies reveal common features. Even when they include different hydrophilic moieties (oxyethylene chains, free hydroxyl, etc.) and scaffolds (steroid derivatives, neutral or polar macrocycles, etc.), amphipathic molecules, that cannot span the entire phospholipid bilayer, generate defects in the contact zone between the ionophore and the lipids and increase the permeability in the bulk membrane. Therefore, topologically complex structures that span the entire membrane are needed to elicit channel-like and ion selective behaviors. In particular the alternate-calix[4]arene macrocycle proved to be a versatile platform to obtain 3D-structures that can form unimolecular channels in membranes. In these systems, the selection of proper donor groups allows us to control the ion selectivity of the process. We can switch from cation to anion transport by substituting protonated amines for the oxygen donors. Large and stable tubular structures with nanometric sized transmembrane nanopores that provide ample internal space represent a different approach for the preparation of synthetic ion channels. We used the metal-mediated self-assembly of porphyrin ligands with Re(I) corners as a new method for producing to robust channel-like structures. Such structures can survive in the complex membrane environment and show interesting ionophoric behavior. In addition to the development of new design principles, the selective modification of the biological membrane permeability could lead to important developments in medicine and technology.