Concetta Giancola

Professor of Physical Chemistry

Name Concetta
Surname Giancola
Institution University of Naples – Federico II
Address Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
Concetta Giancola


  • Shedding light on the interaction between TMPyP4 and human telomeric quadruplexes.

    Publication Date: 05/11/2009 on The journal of physical chemistry. B
    by Martino L, Pagano B, Fotticchia I, Neidle S, Giancola C
    DOI: 10.1021/jp9066394

    The nature of the binding mode and stoichiometry of the TMPyP4 cationic porphyrin to G-quadruplex structures continues to be controversial, with no consensus model to date, especially for intramolecular G-quadruplexes from human telomeric sequences. Those sequences possess intricate polymorphism in solution that appears to be reduced under molecular crowding conditions in which the parallel structure appears to be the most populated one. We have performed a systematic study, in dilute solution and under molecular crowding conditions, of the binding reactions between TMPyP4 and four G-quadruplexes formed by different truncations of human telomeric DNA, with 5'- or 3'-flanking bases, using isothermal titration calorimetry and circular dichroism. The results clearly indicate that all of these G-quadruplexes are able to bind up to four TMPyP4 molecules. CD studies show that interaction with TMPyP4 promotes the conversion of the hybrid structures to an antiparallel conformation in dilute solution, while under molecular crowding conditions the interaction does not promote any conformational change. ITC reveals in both cases that the binding process comprises two sequential events, a first in which one molecule of TMPyP4 interacts with the quadruplex structures and a second in which three other molecules bind to the structures. The selectivity of TMPyP4 for the quadruplex relative to duplex DNA was also investigated under molecular crowding conditions showing that TMPyP4 has enhanced selectivity for quadruplex DNA compared to the duplex structure. This finding reinforces the potential applications of TMPyP4.

  • Applications of isothermal titration calorimetry in biophysical studies of G-quadruplexes.

    Publication Date: 02/07/2009 on International journal of molecular sciences
    by Pagano B, Mattia CA, Giancola C
    DOI: 10.3390/ijms10072935

    G-quadruplexes are higher-order nucleic acids structures formed by G-rich sequences that are stabilized by tetrads of hydrogen-bonded guanine bases. Recently, there has been growing interest in the study of G-quadruplexes because of their possible involvement in many biological processes. Isothermal titration calorimetry (ITC) has been proven to be a useful tool to study the energetic aspects of G-quadruplex interactions. Particularly, ITC has been applied many times to determine the thermodynamic properties of drug-quadruplex interactions to screening among various drugs and to address drug design. In the present review, we will focus on the ITC studies of G-quadruplex structures and their interaction with proteins and drugs and the most significant results will be discussed.

  • Stability and cations coordination of DNA and RNA 14-mer G-quadruplexes: a multiscale computational approach.

    Publication Date: 25/09/2008 on The journal of physical chemistry. B
    by Pagano B, Mattia CA, Cavallo L, Uesugi S, Giancola C, Fraternali F
    DOI: 10.1021/jp804036j

    Molecular dynamics simulations have been used to study the differences between two DNA and RNA 14-mer quadruplexes of analogous sequences. Their structures present a completely different fold: DNA forms a bimolecular quadruplex containing antiparallel strands and diagonal loops; RNA forms an intrastrand parallel quadruplex containing a G-tetrad and an hexad, which dimerizes by hexad stacking. We used a multiscale computational approach combining classical Molecular dynamics simulations and density functional theory calculations to elucidate the difference in stability of the 2-folds and their ability in coordinating cations. The presence of 2'-OH groups in the RNA promotes the formation of a large number of intramolecular hydrogen bonds that account for the difference in fold and stability of the two 14-mers. We observe that the adenines in the RNA quadruplex play a key role in conserving the geometry of the hexad. We predict the cation coordination mode of the two quadruplexes, not yet observed experimentally, and we offer a rationale for the corresponding binding energies involved.

  • Targeting DNA quadruplexes with distamycin A and its derivatives: an ITC and NMR study.

    Publication Date: 01/08/2008 on Biochimie
    by Pagano B, Virno A, Mattia CA, Mayol L, Randazzo A, Giancola C
    DOI: 10.1016/j.biochi.2008.03.006

    The use of small molecules that bind and stabilize G-quadruplex structures is emerging as a promising way to inhibit telomerase activity in tumor cells. In this paper, isothermal titration calorimetry (ITC) and 1H NMR studies have been conducted to examine the binding of distamycin A and its two carbamoyl derivatives (compounds 1 and 2) to the target [d(TGGGGT)]4 and d[AG3(T2AG3)3] quadruplexes from the Tetrahymena and human telomeres, respectively. The interactions were examined using two different buffered solutions containing either K+ or Na+ at a fixed ionic strength, to evaluate any influence of the ions present in solution on the binding behaviour. Experiments reveal that distamycin A and compound 1 bind the investigated quadruplexes in both solution conditions; conversely, compound 2 appears to have a poor affinity in any case. Moreover, these studies indicate that the presence of different cations in solution affects the stoichiometry and thermodynamics of the interactions.

  • Synthesis, biophysical characterization, and anti-HIV activity of glyco-conjugated G-quadruplex-forming oligonucleotides.

    Publication Date: 01/03/2008 on Bioconjugate chemistry
    by D'Onofrio J, Petraccone L, Martino L, Di Fabio G, Iadonisi A, Balzarini J, Giancola C, Montesarchio D
    DOI: 10.1021/bc7003395

    Novel hybrid oligonucleotides carrying the G-quadruplex-forming d(5'TGGGAG3') sequence, conjugated with mono- or disaccharides at the 3' or 5'-end through phosphodiester bonds, have been synthesized as potential anti-HIV agents, via a fully automated, online phosphoramidite-based solid-phase strategy. CD-monitored thermal denaturation studies on the resulting quadruplexes indicated the insertion of a single monosaccharide at the 3'-end as the optimal modification, conferring improved stability to the quadruplex complex. In addition, the 3'-conjugation with glucose or mannose converted the anti-HIV inactive unmodified oligomer into active compounds. On the contrary, the 5'-tethering with these monosaccharides, as well as the conjugation, either at the 5' or 3'-end, with sucrose, were in all cases detrimental to quadruplex stability and did not improve the biological activity. On the basis of the assumption that the kinetically and thermodynamically favored formation of the quadruplex complex is a prerequisite for efficient antiviral activity, a novel bis-conjugated oligonucleotide was designed. This combined a mannose residue at the 3'-phosphate end with bulky aromatic tert-butyldiphenylsilyl (TBDPS) group at the 5'-end, previously shown to markedly favor the formation of quadruplex complexes. The 5',3'-bis-conjugated 6-mer, for which a detailed biophysical characterization has been carried out, resulted in 3-fold greater antiviral activity against HIV-1 than the sole 3'-glyco-conjugated oligonucleotide.

  • Stability and binding properties of a modified thrombin binding aptamer.

    Publication Date: 15/01/2008 on Biophysical journal
    by Pagano B, Martino L, Randazzo A, Giancola C
    DOI: 10.1529/biophysj.107.117382

    Aptamer-based drugs represent an attractive approach in pharmacological therapy. The most studied aptamer, thrombin binding aptamer (TBA), folds into a well-defined quadruplex structure and binds to its target with good specificity and affinity. Modified aptamers with improved biophysical properties could constitute a new class of therapeutic aptamers. In this study we show that the modified thrombin binding aptamer (mTBA), (3')GGT(5')-(5')TGGTGTGGTTGG(3'), which also folds into a quadruplex structure, is more stable than its unmodified counterpart and shows a higher thrombin affinity. The stability of the modified aptamer was investigated using differential scanning calorimetry, and the energetics of mTBA and TBA binding to thrombin was characterized by means of isothermal titration calorimetry (ITC). ITC data revealed that TBA/thrombin and mTBA/thrombin binding stoichiometry is 1:2 for both interactions. Structural models of the two complexes of thrombin with TBA and with mTBA were also obtained and subjected to molecular dynamics simulations in explicit water. Analysis of the models led to an improvement of the understanding of the aptamer-thrombin recognition at a molecular level.

  • Structural and thermodynamic studies of the interaction of distamycin A with the parallel quadruplex structure [d(TGGGGT)]4.

    Publication Date: 26/12/2007 on Journal of the American Chemical Society
    by Martino L, Virno A, Pagano B, Virgilio A, Di Micco S, Galeone A, Giancola C, Bifulco G, Mayol L, Randazzo A
    DOI: 10.1021/ja075710k

    The complex between distamycin A and the parallel DNA quadruplex [d(TGGGGT)]4 has been studied by 1H NMR spectroscopy and isothermal titration calorimetry (ITC). To unambiguously assert that distamycin A interacts with the grooves of the quadruplex [d(TGGGGT)]4, we have analyzed the NMR titration profile of a modified quadruplex, namely [d(TGGMeGGT)]4, and we have applied the recently developed differential frequency-saturation transfer difference (DF-STD) method, for assessing the ligand-DNA binding mode. The three-dimensional structure of the 4:1 distamycin A/[d(TGGGGT)]4 complex has been determined by an in-depth NMR study followed by dynamics and mechanics calculations. All results unequivocally indicate that distamycin molecules interact with [d(TGGGGT)]4 in a 4:1 binding mode, with two antiparallel distamycin dimers that bind simultaneously two opposite grooves of the quadruplex. The affinity between distamycin A and [d(TGGGGT)]4 enhances ( approximately 10-fold) when the ratio of distamycin A to the quadruplex is increased. In this paper we report the first three-dimensional structure of a groove-binder molecule complexed to a DNA quadruplex structure.

  • Energetics of quadruplex-drug recognition in anticancer therapy.

    Publication Date: 01/09/2007 on Current cancer drug targets
    by Pagano B, Giancola C

    Immortality of tumour cells is strictly correlated to telomerase activity. Telomerase is overexpressed in about 85% of tumour cells and maintains telomere length contributing to cell immortalisation, whereas in somatic cells telomeres progressively shorten until cell death occurs by apoptosis. Different drugs can promote telomeric G-rich overhangs which fold into quadruplex structures that inhibit telomerase activity. Detailed studies on drug-quadruplex complexes are essential to understand quadruplex recognition and address drug design. This review will discuss the energetic aspects of quadruplex-drug interactions with a particular attention to physico-chemical methodologies.

  • A novel thrombin binding aptamer containing a G-LNA residue.

    Publication Date: 01/09/2007 on Bioorganic & medicinal chemistry
    by Virno A, Randazzo A, Giancola C, Bucci M, Cirino G, Mayol L
    DOI: 10.1016/j.bmc.2007.06.008

    In this work, we report the solution structure, thermodynamic studies, and the pharmacological properties of a new modified thrombin binding aptamer (TBA) containing a G-LNA residue, namely d(5'-GGTTGGTGTGGTTGg-3'), where upper case and lower case letters represent DNA and LNA residues, respectively. NMR and CD spectroscopy, as well as molecular dynamics and mechanic calculations, has been used to characterize the three-dimensional structure. The modified oligonucleotide is characterized by a chair-like structure consisting of two G-tetrads connected by three edge-wise TT, TGT, and TT loops. d(5'-GGTTGGTGTGGTTGg-3') is characterized by the same folding of TBA, being two strands parallel to each other and two strands oriented in opposite manner. This led to a syn-anti-syn-anti and anti-syn-anti-syn arrangements of the Gs in the two tetrads. d(5'-GGTTGGTGTGGTTGg-3') possesses an anticoagulant activity, even if decreased with respect to the TBA.

  • 5'-Modified G-quadruplex forming oligonucleotides endowed with anti-HIV activity: synthesis and biophysical properties.

    Publication Date: 01/07/2007 on Bioconjugate chemistry
    by D'Onofrio J, Petraccone L, Erra E, Martino L, Fabio GD, Napoli LD, Giancola C, Montesarchio D
    DOI: 10.1021/bc070062f

    Oligodeoxyribonucleotides of sequence d(5'TGGGAG3') carrying bulky aromatic groups at the 5' end were found to exhibit potent anti-HIV activity [Hotoda, H., et al. (1998) J. Med. Chem. 41, 3655-3663 and references therein]. Structure-activity relationship investigations indicated that G-quadruplex formation, as well as the presence of large aromatic substituents at the 5'-end, were both essential for their antiviral activity. In this work, we synthesized some representative examples of the anti-HIV active Hotoda's 6-mers and analyzed the resulting G-quadruplexes by CD, DSC, and molecular modeling studies, in comparison with the unmodified oligonucleotide. In the case of the sequence carrying the 3,4-dibenzyloxybenzyl (DBB) group, identified as the best candidate for further drug optimization, we developed an alternative protocol to synthesize the 5'-DBB-thymidine phosphoramidite building block in higher yields. The thermodynamic and kinetic parameters for the association/dissociation processes of the 5'-conjugated quadruplexes, determined with respect to the unmodified one, were discussed in light of the molecular modeling studies. The aromatic groups at the 5' position of d(5'TGGGAG3') dramatically enhance both the equilibrium and the rate of formation of the quadruplex complexes. The overall stability of the investigated quadruplexes was found to correlate with the reported IC50 values, thus furnishing quantitative evidence for the hypothesis that the G-quadruplex structures are the ultimate active species, effectively responsible for the biological activity.