Ciro Isidoro

Professor of General Pathology

Name Ciro
Surname Isidoro
Institution Università del Piemonte Orientale
Address Department of Health Sciences, via P. Solaroli 17, 20100 Novara, Italy.
Resume Download
Ciro Isidoro


  • Epigenetic targeting of autophagy for cancer prevention and treatment by natural compounds.

    Publication Date: 02/05/2019 on Seminars in cancer biology
    by Vidoni C, Ferraresi A, Secomandi E, Vallino L, Dhanasekaran DN, Isidoro C
    DOI: 10.1016/j.semcancer.2019.04.006

    Despite the undeniable progress made in the last decades, cancer continues to challenge the scientists engaged in searching for an effective treatment for its prevention and cure. One of the malignant hallmarks that characterize cancer cell biology is the altered metabolism of sugars and amino acids. Autophagy is a pathway allowing the macromolecular turnover via recycling of the substrates resulting from the lysosomal degradation of damaged or redundant cell molecules and organelles. As such, autophagy guarantees the proteome quality control and cell homeostasis. Data from in vitro, in animals and in patients researches show that dysregulation of autophagy favors carcinogenesis and cancer progression, making this process an ineluctable target of cancer therapy. The autophagy process is regulated at genetic, epigenetic and post-translational levels. Targeting autophagy with epigenetic modifiers could represent a valuable strategy to prevent or treat cancer. A wealth of natural products from terrestrial and marine living organisms possess anti-cancer activity. Here, we review the experimental proofs demonstrating the ability of natural compounds to regulate autophagy in cancer via epigenetics. The hope is that in the near future this knowledge could translate into effective intervention to prevent and cure cancer.

  • Amino acid response by Halofuginone in Cancer cells triggers autophagy through proteasome degradation of mTOR.

    Publication Date: 02/05/2019 on Cell communication and signaling : CCS
    by Follo C, Vidoni C, Morani F, Ferraresi A, Seca C, Isidoro C
    DOI: 10.1186/s12964-019-0354-2

    In the event of amino acid starvation, the cell activates two main protective pathways: Amino Acid starvation Response (AAR), to inhibit global translation, and autophagy, to recover the essential substrates from degradation of redundant self-components. Whether and how AAR and autophagy (ATG) are cross-regulated and at which point the two regulatory pathways intersect remain unknown. Here, we provide experimental evidence that the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) specifically located at the lysosome level links the AAR with the autophagy pathway.

  • Methods for Monitoring Macroautophagy in Pancreatic Cancer Cells.

    Publication Date: 01/01/2019 on Methods in molecular biology (Clifton, N.J.)
    by Vidoni C, Ferraresi A, Seca C, Secomandi E, Isidoro C
    DOI: 10.1007/978-1-4939-8879-2_18

    Macroautophagy is a catabolic process through which redundant, aged, or damaged cellular structures are first enclosed within double-membrane vesicles (called autophagosomes), and thereafter degraded within lysosomes. Macroautophagy provides a primary route for the turnover of macromolecules, membranes and organelles, and as such plays a major role in cell homeostasis. As part of the stress response, autophagy is crucial to determine the cell fate in response to extracellular or intracellular injuries. Autophagy is involved in cancerogenesis and in cancer progression. Here we illustrate the essential methods for monitoring autophagy in pancreatic cancer cells.

  • Ovarian cancer cell-derived lysophosphatidic acid induces glycolytic shift and cancer-associated fibroblast-phenotype in normal and peritumoral fibroblasts.

    Publication Date: 29/11/2018 on Cancer letters
    by Radhakrishnan R, Ha JH, Jayaraman M, Liu J, Moxley KM, Isidoro C, Sood AK, Song YS, Dhanasekaran DN
    DOI: 10.1016/j.canlet.2018.11.023

    Cancer-associated fibroblasts (CAFs) play a critical role in cancer progression, metastasis, and therapy resistance. Molecular events that confer CAF-phenotype to predecessor-cells are not fully understood. We demonstrate here that the ovarian cancer cell-conditioned medium (OCC-CM) induces CAF-phenotype in MRC5 lung-fibroblasts and it can be mimicked by LPA. While OCC-CM and LPA stimulated the expression of cellular CAF-markers by 3-days, they induced aerobic glycolysis, a metabolic marker for CAF, by 6 hrs. OCC-CM/LPA-induced glycolysis in lung (MRC5) as well as ovarian fibroblasts (NOF151) was inhibited by the LPA-receptor antagonist, Ki16425. Ovarian cancer patient-derived ascitic fluid-induced aerobic glycolysis in both NFs and Ovarian CAFs and it was inhibited by Ki16425. Further analysis indicated that LPA upregulated HIF1α-levels and the silencing of HIF1α attenuated LPA-induced glycolysis in both NOFs and CAFs. These results establish LPA-induced glycolytic-shift as the earliest, potentially priming event, in NF to CAF-transition. These findings also identify a role for LPA-LPAR-HIF1α signaling-hub in the maintenance of the glycolytic-phenotype in CAFs. Our results provide evidence that targeted inhibition of LPA-mediated metabolic reprogramming in CAFs may represent an adjuvant therapy in ovarian cancer.

  • Erratum to "Resveratrol interrupts the pro-invasive communication between Cancer associated Fibroblasts and Cholangiocarcinoma cells" [Cancer Letters 430C (2018) 160-171].

    Publication Date: 10/10/2018 on Cancer letters
    by Thongchot S, Ferraresi A, Vidoni C, Loilome W, Yongvanit P, Namwat N, Isidoro C
    DOI: 10.1016/j.canlet.2018.06.026
  • Dihydroartemisinin induces apoptosis and autophagy-dependent cell death in cholangiocarcinoma through a DAPK1-BECLIN1 pathway.

    Publication Date: 22/08/2018 on Molecular carcinogenesis
    by Thongchot S, Vidoni C, Ferraresi A, Loilome W, Yongvanit P, Namwat N, Isidoro C
    DOI: 10.1002/mc.22893

    Cholangiocarcinoma (CCA) is a very aggressive cancer arising from the malignant transformation of cholangiocytes. Intrahepatic CCA is associated with reactive inflammation and intense fibrosis of the hepatobiliary tract. Dihydroartemisinin (DHA), the active compound found in Artemisia annua, has been shown to possess anti-tumor activity in a variety of human cancers, including hepatoma. Here, we tested the ability of DHA to specifically kill CCA cells and have investigated the underlying mechanisms. DHA induced both apoptosis and autophagy-dependent caspase-independent cell death in many CCA cell lines, while being slightly toxic to immortalized cholangiocytes. DHA induced the expression of many apoptosis- and autophagy-related genes in CCA cells. In particular, it greatly induced the expression of DAPK1, and reduced the interaction of BECLIN1 with BCL-2 while promoting its interaction with PI3KC3. Genetic silencing of DAPK1 prevented DHA-induced autophagy. Pharmacologic and genetic inhibition of BECLIN1 function prevented autophagy and cell death induced by DHA in CCA cells. These data unravel a novel pathway of DHA cancer toxicity and open the possibility to introduce DHA in the therapeutic regimen for the treatment of CCA. This article is protected by copyright. All rights reserved.

  • Autophagy-Associated Shrinkage of the Hepatopancreas in Fasting Male <i>Macrobrachium rosenbergii</i> Is Rescued by Neuropeptide F.

    Publication Date: 24/05/2018 on Frontiers in physiology
    by Thongrod S, Wanichanon C, Kankuan W, Siangcham T, Phadngam S, Morani F, Isidoro C, Sobhon P
    DOI: 10.3389/fphys.2018.00613

    Invertebrate neuropeptide F-I (NPF-I), much alike its mammalian homolog neuropeptide Y, influences several physiological processes, including circadian rhythms, cortical excitability, stress response, and food intake behavior. Given the role of autophagy in the metabolic stress response, we investigated the effect of NPF-1 on autophagy during fasting and feeding conditions in the hepatopancreas and muscle tissues of the male giant freshwater prawn . Starvation up-regulated the expression of the autophagy marker LC3 in both tissues. Yet, based on the relative levels of the autophagosome-associated LC3-II isoform and of its precursor LC3-I, the hepatopancreas was more responsive than the muscle to starvation-induced autophagy. Injection of NPF-I inhibited the autophagosome formation in the hepatopancreas of fasting prawns. Relative to the body weight, the muscle weight was not affected, while that of the hepatopancreas decreased upon starvation and NPF-1 treatment could largely prevent such weight loss. Thus, the hepatopancreas is the reserve organ for the nutrient homeostasis during starvation and NPF-I plays a crucial role in the balancing of energy expenditure and energy intake during starvation by modulating autophagy.

  • Resveratrol interrupts the pro-invasive communication between Cancer Associated Fibroblasts and Cholangiocarcinoma cells.

    Publication Date: 23/05/2018 on Cancer letters
    by Thongchot S, Ferraresi A, Vidoni C, Loilome W, Yongvanit P, Namwat N, Isidoro C
    DOI: 10.1016/j.canlet.2018.05.031

    Cholangiocarcinoma (CCA), the cancer arising from the epithelial cells of bile ducts, is a prototype of inflammatory-driven cancer. Cytokines released by cancer associated fibroblasts (CAFs) play a pivotal role in CCA progression, driving the epigenetic Epithelial-to-Mesenchymal transition and the growth and metastasization of CCA cells. Consistently, the conditioned medium from CCA-derived CAFs further stimulated the secretion of IL-6, and to a lesser extent of IL-8, by CCA cells. CCA has a poor prognosis, because of late diagnosis and of high resistance to radio- and chemo-therapy of CCA cells. Targeting the CAFs and their secretion could be an alternative option. We found that while IL-6 indeed promoted the cell migration of invasive CCA cells, the nutraceutical Resveratrol strongly counteracted this effect both in CCA cells and in immortalized cholangiocytes. More importantly, here we show that Resveratrol has the potential to abrogate the secretion of IL-6 by CAFs. While the conditioned medium from CAFs strongly induced IL-6 mediated motility of CCA cells, the conditioned medium from CAFs pre-treated with Resveratrol completely halted cancer cell motility and reverted the N-to E-cadherin switch in migrating cells. This effect was associated with stimulation of autophagy in the cancer cells. This is the first demonstration that CAFs secretory products directly affect the regulation of autophagy and consequently the behavior of CCA cells, and that a nutraceutical may revert the malignant phenotype of cancer cells by acting on CAFs metabolism and secretion.

  • LPA Induces Metabolic Reprogramming in Ovarian Cancer via a Pseudohypoxic Response.

    Publication Date: 15/04/2018 on Cancer research
    by Ha JH, Radhakrishnan R, Jayaraman M, Yan M, Ward JD, Fung KM, Moxley K, Sood AK, Isidoro C, Mukherjee P, Song YS, Dhanasekaran DN
    DOI: 10.1158/0008-5472.CAN-17-1624

    Although hypoxia has been shown to reprogram cancer cells toward glycolytic shift, the identity of extrinsic stimuli that induce metabolic reprogramming independent of hypoxia, especially in ovarian cancer, is largely unknown. In this study, we use patient-derived ovarian cancer cells and high-grade serous ovarian cancer cell lines to demonstrate that lysophosphatidic acid (LPA), a lipid growth factor and GPCR ligand whose levels are substantially increased in ovarian cancer patients, triggers glycolytic shift in ovarian cancer cells. Inhibition of the G protein α-subunit Gαi2 disrupted LPA-stimulated aerobic glycolysis. LPA stimulated a pseudohypoxic response via Rac-mediated activation of NADPH oxidase and generation of reactive oxygen species, resulting in activation of HIF1α. HIF1α in turn induced expression of glucose transporter-1 and the glycolytic enzyme hexokinase-2 (HKII). Treatment of mice bearing ovarian cancer xenografts with an HKII inhibitor, 3-bromopyruvate, attenuated tumor growth and conferred a concomitant survival advantage. These studies reveal a critical role for LPA in metabolic reprogramming of ovarian cancer cells and identify this node as a promising therapeutic target in ovarian cancer. These findings establish LPA as a potential therapeutic target in ovarian cancer, revealing its role in the activation of HIF1α-mediated metabolic reprogramming in this disease. .

  • The metabolic cross-talk between epithelial cancer cells and stromal fibroblasts in ovarian cancer progression: Autophagy plays a role.

    Publication Date: 19/09/2017 on Medicinal research reviews
    by Thuwajit C, Ferraresi A, Titone R, Thuwajit P, Isidoro C
    DOI: 10.1002/med.21473

    Cancer and stromal cells, which include (cancer-associated) fibroblasts, adipocytes, and immune cells, constitute a mixed cellular ecosystem that dynamically influences the behavior of each component, creating conditions that ultimately favor the emergence of malignant clones. Ovarian cancer cells release cytokines that recruit and activate stromal fibroblasts and immune cells, so perpetuating a state of inflammation in the stroma that hampers the immune response and facilitates cancer survival and propagation. Further, the stroma vasculature impacts the metabolism of the cells by providing or limiting the availability of oxygen and nutrients. Autophagy, a lysosomal catabolic process with homeostatic and prosurvival functions, influences the behavior of cancer cells, affecting a variety of processes such as the survival in metabolic harsh conditions, the invasive growth, the development of immune and chemo resistance, the maintenance of stem-like properties, and dormancy. Further, autophagy is involved in the secretion and the signaling of promigratory cytokines. Cancer-associated fibroblasts can influence the actual level of autophagy in ovarian cancer cells through the secretion of pro-inflammatory cytokines and the release of autophagy-derived metabolites and substrates. Interrupting the metabolic cross-talk between cancer cells and cancer-associated fibroblasts could be an effective therapeutic strategy to arrest the progression and prevent the relapse of ovarian cancer.