Carla Perrone Capano

Professor of Physiology
Vice-director of the CIRN

Name Carla
Surname Perrone Capano
Institution University of Naples – Federico II
E-Mail carla.perronecapano@unina.it
Address Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy
Carla Perrone Capano

Member PUBLICATIONS

  • Pre-filtering improves reliability of Affymetrix GeneChips results when used to analyze gene expression in complex tissues.

    Publication Date: 01/04/2008 on Molecular and cellular probes
    by Greco D, Leo D, di Porzio U, Perrone Capano C, Auvinen P
    DOI: 10.1016/j.mcp.2007.11.002

    Affymetrix GeneChip represents a very reliable and standardized technology for genome-wide gene expression screening. However, in experiments carried out on complex biological samples (e.g. brain tissues composed of several diverse cell types), significant noise can arise due to important transcripts being expressed in a relatively small number of cells. This noise results in many observations coming from unreliable hybridization reactions. Here we propose a method for pre-filtering Affymetrix data according to measures of hybridization reliability. We used our pre-filtering method on a microarray dataset obtained from the brains of rats chronically treated with a psychostimulant drug. Our pre-filter protocol facilitates selection of biologically relevant candidate genes, which could be validated by real-time PCR with a rate of 98%.

  • GDNF signaling in embryonic midbrain neurons in vitro.

    Publication Date: 23/07/2007 on Brain research
    by Consales C, Volpicelli F, Greco D, Leone L, Colucci-D'Amato L, Perrone-Capano C, di Porzio U
    DOI: 10.1016/j.brainres.2007.04.071

    The glial cell line-derived neurotrophic factor (GDNF) exerts trophic actions on a number of cell types, including mesencephalic dopaminergic (mDA) neurons. Using rat mesencephalic primary cultures enriched in mDA neurons, we show that protracted GDNF stimulation increases their survival and neurite outgrowth. It modulates the expression of genes essential for DA function (tyrosine hydroxylase, TH and dopamine transporter, dat) and of DA high affinity uptake. To identify genes involved in GDNF signaling pathways, we have used DNA microarray on mDA cultures stimulated with GDNF for 3 h. Here we show that GDNF signaling sequentially activates the genes encoding for the transcription factors EGR1 and TIEG. In addition, it increases the expression of cav1, which encodes for the major component of caveolae. GDNF also modulates the expression of the genes encoding for the Calcineurin subunits ppp3R1 and ppp3CB, and inhibits calcium-calmodulin-dependent protein kinase II beta isoform (CaMKIIbeta) gene expression. These proteins are involved in neuronal differentiation and synaptic plasticity. Moreover, GDNF stimulation down regulates the expression of the glycogen synthase kinase 3beta (gsk3beta) gene, involved in neuronal apoptosis. Using inhibitors of specific intracellular signal transduction pathways we show that changes of egr1, tieg, cav1, CaMkIIbeta and gsk3beta genes expression are extracellular-signal regulated kinases 1/2 (ERK)-dependent, while the cAMP-dependent protein kinase (PKA) pathway influences the up-regulation of ppp3R1 and ppp3CB gene expression. These results demonstrate that GDNF stimulation results in the transcriptional modulation of genes involved in neuronal plasticity and survival and in mDA function, mediated in part by ERK and PKA signaling.

  • Bdnf gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro.

    Publication Date: 01/07/2007 on Journal of neurochemistry
    by Volpicelli F, Caiazzo M, Greco D, Consales C, Leone L, Perrone-Capano C, Colucci D'Amato L, di Porzio U
    DOI: 10.1111/j.1471-4159.2007.04494.x

    The transcription factor Nurr1 is essential for the generation of midbrain dopaminergic neurons (mDA). Only a few Nurr1-regulated genes have so far been identified and it remains unclear how Nurr1 influences the development and function of dopaminergic neurons. To identify novel Nurr1 target genes we have used genome-wide expression profiling in rat midbrain primary cultures, enriched in dopaminergic neurons, following up-regulation of Nurr1 expression by depolarization. In this study we demonstrate that following depolarization the hyperexpression of Nurr1 and the brain derived neurotrophic factor (BDNF) are phospholipase C- and protein kinase C-dependent. We show that Bdnf, which encodes a neurotrophin involved also in the phenotypic maturation of mDA neurons, is a novel Nurr1 target gene. By RNA interference experiments we show that a decreased Nurr1 expression is followed by tyrosine hydroxylase and BDNF mRNA and protein down-regulation. Reporter gene assay experiments performed on midbrain primary cultures using four Bdnf promoter constructs show that Bdnf is a direct target gene of Nurr1. Taken together, our findings suggest that Nurr1 might also influence the development and the function of midbrain dopaminergic neurons via direct regulation of Bdnf expression.

  • Chronic cocaine administration modulates the expression of transcription factors involved in midbrain dopaminergic neuron function.

    Publication Date: 01/02/2007 on Experimental neurology
    by Leo D, di Porzio U, Racagni G, Riva MA, Fumagalli F, Perrone-Capano C
    DOI: 10.1016/j.expneurol.2006.08.024

    Chronic cocaine use leads to pronounced alterations in neuronal functions in brain circuits associated with reward. In the present study, we examined in the rat midbrain the effects of acute, subchronic (5 days) and chronic cocaine treatments (14 days) on the gene expression of transcription factors involved in the development and maintenance of dopaminergic neurons. We show that chronic, but not acute or subchronic, cocaine administration downregulates Nurr1 and Pitx3 transcripts whereas En1 transcripts are upregulated. Conversely, Lmx1b and En2 transcripts are not affected by the drug treatment, indicating that the modulation of the midbrain transcription factors analyzed is highly selective. Interestingly, modification of the gene expression for these transcription factors persists in midbrain as long as two weeks after the last drug administration, suggesting that it may account for some of the enduring alterations in midbrain dopaminergic circuits associated with chronic cocaine use.

  • Methylphenidate administration to adolescent rats determines plastic changes on reward-related behavior and striatal gene expression.

    Publication Date: 01/09/2006 on Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
    by Adriani W, Leo D, Greco D, Rea M, di Porzio U, Laviola G, Perrone-Capano C
    DOI: 10.1038/sj.npp.1300962

    Administration of methylphenidate (MPH, Ritalin) to children with attention deficit hyperactivity disorder (ADHD) is an elective therapy, but raises concerns for public health, due to possible persistent neurobehavioral alterations. Wistar adolescent rats (30 to 46 day old) were administered MPH or saline (SAL) for 16 days, and tested for reward-related and motivational-choice behaviors. When tested in adulthood in a drug-free state, MPH-pretreated animals showed increased choice flexibility and economical efficiency, as well as a dissociation between dampened place conditioning and more marked locomotor sensitization induced by cocaine, compared to SAL-pretreated controls. The striatal complex, a core component of the natural reward system, was collected both at the end of the MPH treatment and in adulthood. Genome-wide expression profiling, followed by RT-PCR validation on independent samples, showed that three members of the postsynaptic-density family and five neurotransmitter receptors were upregulated in the adolescent striatum after subchronic MPH administration. Interestingly, only genes for the kainate 2 subunit of ionotropic glutamate receptor (Grik2, also known as KA2) and the 5-hydroxytryptamine (serotonin) receptor 7 (Htr7) (but not GABA(A) subunits and adrenergic receptor alpha1b) were still upregulated in adulthood. cAMP responsive element-binding protein and Homer 1a transcripts were modulated only as a long-term effect. In summary, our data indicate short-term changes in neural plasticity, suggested by modulation of expression of key genes, and functional changes in striatal circuits. These modifications might in turn trigger enduring changes responsible for the adult neurobehavioral profile, that is, altered processing of incentive values and a modified flexibility/habit balance.

  • Short-term effects of adolescent methylphenidate exposure on brain striatal gene expression and sexual/endocrine parameters in male rats.

    Publication Date: 01/08/2006 on Annals of the New York Academy of Sciences
    by Adriani W, Leo D, Guarino M, Natoli A, Di Consiglio E, De Angelis G, Traina E, Testai E, Perrone-Capano C, Laviola G
    DOI: 10.1196/annals.1369.005

    Exposure to methylphenidate (MPH) during adolescence is the elective therapy for attention deficit/hyperactivity disorder (ADHD) children, but raises major concerns for public health, due to possibly persistent neurobehavioral changes. Rats (30- to 44-days old) were administered MPH (2 mg/kg, i.p once daily) or saline (SAL). At the end of the treatment we collected plasma, testicular, liver, and brain (striatum) samples. The testes and liver were used to evaluate conventional reproductive and metabolic endpoints. Testes of MPH-exposed rats weighed more and contained an increased quantity of sperm, whereas testicular levels of testosterone (TST) were markedly decreased. The MPH treatment exerted an inductive effect on enzymatic activity of TST hydroxylases, resulting in increased hepatic TST catabolism. These findings suggest that subchronic MPH exposure in adolescent rats could have a trophic action on testis growth and a negative impact on TST metabolism. We have analyzed striatal gene expression profiles as a consequence of MPH exposure during adolescence, using microarray technology. More than 700 genes were upregulated in the striatum of MPH-treated rats (foldchange >1.5). A first group of genes were apparently involved in migration of immature neural/glial cells and/or growth of novel axons. These genes include matrix proteases (ADAM-1, MMP14), their inhibitors (TIMP-2, TIMP-3), the hyaluronan-mediated motility receptor (RHAMM), and growth factors (transforming growth factor-beta3 [TGF-beta3] and fibroblast growth factor 14 [FGF14]). A second group of genes were suggestive of active axonal myelination. These genes mediate survival of immature cells after contact with newly produced axonal matrix (laminin B1, collagens, integrin alpha 6) and stabilization of myelinating glia-axon contacts (RAB13, contactins 3 and 4). A third group indicated the appearance and/or upregulation of mature processes. The latter included genes for: K+ channels (TASK-1, TASK-5), intercellular junctions (connexin30), neurotransmitter receptors (adrenergic alpha 1B, kainate 2, serotonin 7, GABA-A), as well as major proteins responsible for their transport and/or anchoring (Homer 1, MAGUK MPP3, Shank2). All these genes were possibly involved in synaptic plasticity, namely the formation, maturation, and stabilization of new neural connections within the striatum. MPH treatment seems to potentiate synaptic plasticity, which is an age-dependent developmental phenomenon that adolescent rats are very likely to show, compared to adults. Our observations suggest that adolescent MPH exposure causes only transient changes in reproductive and hormonal parameters, and a more enduring enhancement of neurobehavioral plasticity.

  • Modulation of nurr1 gene expression in mesencephalic dopaminergic neurones.

    Publication Date: 01/03/2004 on Journal of neurochemistry
    by Volpicelli F, Perrone-Capano C, Da Pozzo P, Colucci-D'Amato L, di Porzio U

    The transcription factor/nuclear receptor Nurr1 is essential for the differentiation of midbrain dopaminergic neurones. Here we demonstrate that, during the ontogeny of rat ventral mesencephalon, nurr1 gene expression is developmentally regulated and its levels show a sharp peak between embryonic day E13 and E15, when most dopaminergic neurones differentiate. In addition, in primary cultures from embryonic rat mesencephalon, nurr1 gene follows a temporal pattern of expression comparable to that observed in vivo. We also report that exposure of embryonic mesencephalic cultures to depolarizing stimuli leads to a robust increase in nurr1 mRNA and protein. The depolarizing effect is also detected in mesencephalic cultures enriched in dopaminergic neurones by using a combination of bFGF and Sonic hedgehog. The latter further increases the number of dopaminergic neurones in these 'expanded' cultures, an effect abolished in the presence of anti-Sonic hedgehog antibodies. Our data show that nurr1 gene is highly expressed in midbrain dopaminergic neurones in a sharp temporal window and that its expression is plastic, both in vivo and in vitro. In addition we show that Sonic hedgehog can direct dopaminergic differentiation in proliferating dopaminergic neuroblasts in vitro.

  • Enhancement of dopaminergic differentiation in proliferating midbrain neuroblasts by sonic hedgehog and ascorbic acid.

    Publication Date: 01/01/2004 on Neural plasticity
    by Volpicelli F, Consales C, Caiazzo M, Colucci-D'Amato L, Perrone-Capano C, di Porzio U
    DOI: 10.1155/NP.2004.45

    We analyzed the molecular mechanisms involved in the acquisition and maturation of dopaminergic (DA) neurons generated in vitro from rat ventral mesencephalon (MES) cells in the presence of mitogens or specific signaling molecules. The addition of basic fibroblast growth factor (bFGF) to MES cells in serum-free medium stimulates the proliferation of neuroblasts but delays DA differentiation. Recombinant Sonic hedgehog (SHH) protein increases up to three fold the number of tyrosine hydroxylase (TH)-positive cells and their differentiation, an effect abolished by anti-SHH antibodies. The expanded cultures are rich in nestin-positive neurons, glial cells are rare, all TH+ neurons are DA, and all DA and GABAergic markers analyzed are expressed. Adding ascorbic acid to bFGF/SHH-treated cultures resulted in a further five- to seven-fold enhancement of viable DA neurons. This experimental system also provides a powerful tool to generate DA neurons from single embryos. Our strategy provides an enriched source of MES DA neurons that are useful for analyzing molecular mechanisms controlling their function and for experimental regenerative approaches in DA dysfunction.

  • Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD.

    Publication Date: 01/11/2003 on Neuroscience and biobehavioral reviews
    by Leo D, Sorrentino E, Volpicelli F, Eyman M, Greco D, Viggiano D, di Porzio U, Perrone-Capano C

    To understand the onset and the molecular mechanisms triggering dopaminergic (DA) dysregulation in Attention-Deficit Hyperactivity Disorder (ADHD), we have used the Spontaneously Hypertensive Rats (SHR), the most widely studied animal model for this disease. We have studied the pattern of expression of specific genes involved in DA neuron differentiation, survival and function during postnatal (P) development of the ventral midbrain in SHR males. Our results show that tyrosine hydroxylase and DA transporter gene expression are significantly and transiently reduced in the SHR midbrain during the first month of postnatal development, although with a different kinetic. The other genes analyzed do not show significant variation between SHR and control rats. In addition, high-affinity DA uptake activity is significantly reduced in synaptosomes obtained from the striatum of 1-month-old SHR, when compared to controls. Our data suggest that down-regulation of DA neurotransmission occurs in the midbrain of SHR in a developmentally regulated temporal window during postnatal development, thus strengthening the hypodopaminergic hypothesis in the pathogenesis of ADHD.

  • Chronic activation of ERK and neurodegenerative diseases.

    Publication Date: 01/11/2003 on BioEssays : news and reviews in molecular, cellular and developmental biology
    by Colucci-D'Amato L, Perrone-Capano C, di Porzio U
    DOI: 10.1002/bies.10355

    The extracellular-signal regulated kinases 1/2 (ERK or ERKs) are involved in the regulation of important neuronal functions, including neuronal plasticity in normal and pathological conditions. We present findings that support the notion that the kinetics and localization of ERK are intrinsically linked, in that the duration of ERK activation dictates its subcellular compartmentalization and/or trafficking. The latter, in turn, dictates whether ERK-expressing cells would enter a program of cell death, survival or differentiation. We summarize experimental data showing that chronic activation of ERK plays a role in the mechanisms that trigger neurodegeneration. We also discuss how MKPs, members of the subclass of dual specificity phosphatases, might be the link between ERK kinetics and its subcellular localization.