Angela Amoresano

Researcher of Analytical Chemistry

Name Angela
Surname Amoresano
Institution University of Naples – Federico II
Address Department of Chemical Sciences, Federico II University, Via Cintia 6, 80126, Naples, Italy
Resume Download
Angela Amoresano


  • A comparative assessment of metals and phthalates in commercial tea infusions: A starting point to evaluate their tolerance limits.

    Publication Date: 01/08/2019 on Food chemistry
    by Troisi J, Richards S, Symes S, Ferretti V, Di Maio A, Amoresano A, Daniele B, Aliberti F, Guida M, Trifuoggi M, De Castro O
    DOI: 10.1016/j.foodchem.2019.02.115

    Tea is one of the most consumed beverages in the word. Here we report the concentrations of metals and phthalates in 32 commercial tea packages. The data were used to estimate the average daily intake of metals and phthalates, and associated Hazard Quotients (HQ) were calculated in order to determine risk of non-cancerous health effects for adults consuming tea on a daily basis. Tea samples were chosen based on the sales network, the price, the marketing quality and the presence of filters in the packages. Relatively high median concentrations of Al (5240 µg/L), Ni (44 µg/L), and Mn (2919 µg/L) were detected. No metals or phthalates quantified in the tea infusions and soluble tea showed an HQ greater than 1, indicating no risk of non-cancerous health effects. The data presented herein may serve as a starting point to evaluate tolerance limits of metals and phthalate in the tea infusion.

  • Mass spectrometry based proteomics for the molecular fingerprinting of Fiano, Greco and Falanghina cultivars.

    Publication Date: 01/06/2019 on Food research international (Ottawa, Ont.)
    by Carpentieri A, Sebastianelli A, Melchiorre C, Pinto G, Staropoli A, Trifuoggi M, Amoresano A
    DOI: 10.1016/j.foodres.2019.02.020

    The official methodologies used for the identification and comparison of vine cultivars are ampelography and ampelometry. These methodologies are essentially based on qualitative assessments or biometric dependent morphological features of the plant. The heterogeneity of cultivars and consequently the increasing demand for a more detailed product typization, led to the introduction of new methodologies for the varietal characterization. In this scenario, proteomics has already proved to be a very useful discipline for the typization of many kinds of edible products. In this paper, we present a proteomic study carried out on three cultivars of Vitis vinifera peculiar of south Italy (Campania) used for white wine production (Fiano, Greco and Falanghina) by advanced biomolecular mass spectrometry approach. Our data highlight variations in the proteomic profiles during ripening for each cultivar and between analyzed cultivars, thus suggesting a new way to outline the biomolecular signature of vines.

  • Mathematical optimization of the green extraction of polyphenols from grape peels through a cyclic pressurization process.

    Publication Date: 17/04/2019 on Heliyon
    by Gallo M, Formato A, Giacco R, Riccardi G, Lungo D, Formato G, Amoresano A, Naviglio D
    DOI: 10.1016/j.heliyon.2019.e01526

    In the current era of high consumption and increasing waste, many products that are believed to be unusable can find a new purpose in the market. For example, the grape peel waste resulting from the production of wine contains numerous bioactive compounds. In reality, grape peels are by-products of winemaking that can be conveniently reused in many different ways, including agronomic use and cosmetic industry applications. Moreover, the by-products can also be used in the energy field as biomass for the production of biogas or in food plants for the production of energy. In this article, to extract polyphenols, grape peels were processed via a cyclically pressurized extraction method known as rapid solid-liquid dynamic extraction (RSLDE), which does not require the use of any organic solvent or include heating or cooling processes that can cause the loss of substances of interest. To better understand the cyclically pressurized extraction process, a numerical simulation was performed to evaluate the exchange between the grape piece solid matrix and water during the extraction process. Furthermore, a finite element model was used to numerically determine the time-dependent concentration distribution at specific times.

  • Evolution of an insect immune barrier through horizontal gene transfer mediated by a parasitic wasp.

    Publication Date: 05/03/2019 on PLoS genetics
    by Di Lelio I, Illiano A, Astarita F, Gianfranceschi L, Horner D, Varricchio P, Amoresano A, Pucci P, Pennacchio F, Caccia S
    DOI: 10.1371/journal.pgen.1007998

    Genome sequencing data have recently demonstrated that eukaryote evolution has been remarkably influenced by the acquisition of a large number of genes by horizontal gene transfer (HGT) across different kingdoms. However, in depth-studies on the physiological traits conferred by these accidental DNA acquisitions are largely lacking. Here we elucidate the functional role of Sl gasmin, a gene of a symbiotic virus of a parasitic wasp that has been transferred to an ancestor of the moth species Spodoptera littoralis and domesticated. This gene is highly expressed in circulating immune cells (haemocytes) of larval stages, where its transcription is rapidly boosted by injection of microorganisms into the body cavity. RNAi silencing of Sl gasmin generated a phenotype characterized by a precocious suppression of phagocytic activity by haemocytes, which was rescued when these immune cells were incubated in plasma samples of control larvae, containing high levels of the encoded protein. Proteomic analysis demonstrated that the protein Sl gasmin is released by haemocytes into the haemolymph, where it opsonizes the invading bacteria to promote their phagocytosis, both in vitro and in vivo. Our results show that important physiological traits do not necessarily originate from evolution of pre-existing genes, but can be acquired by HGT events, through unique pathways of symbiotic evolution. These findings indicate that insects can paradoxically acquire selective advantages with the help of their natural enemies.

  • Encapsulation of the dinuclear trithiolato-bridged arene ruthenium complex diruthenium-1 in an apoferritin nanocage: structure and cytotoxicity.

    Publication Date: 23/01/2019 on ChemMedChem
    by Petruk G, Monti DM, Ferraro G, Pica A, D'Elia L, Pane F, Amoresano A, Furrer J, Kowalski K, Merlino A
    DOI: 10.1002/cmdc.201800805

    The effects of the encapsulation of the cytotoxic dinuclear trithiolato-bridged arene Ru complex [(η6-p-MeC6H4Pri)2Ru2(μ2-S-p-C6H4But)3]Cl (DiRu-1) within the apoferritin (AFt) nanocage were investigated. The DiRu-1-AFt nanocarrier was characterized by UV-Vis spectroscopy, ICP MS, CD and X-ray crystallography. In contrast to previously reported Au- and Pt- based drug-loaded AFt carriers, no direct interactions between DiRu-1 and AFt were evidenced. DiRu-1-AFt is cytotoxic towards immortalized murine fibroblast BALB/c-3T3 transformed with SV40 virus (SVT2) and human epidermoid carcinoma A431 malignant cells and exhibits a moderate selectivity for these cancer cells over the normal BALB/c-3T3 cells. DiRu-1-AFt triggers ROS production, depolarization of mitochondrial membrane potential and induces cell death via p53-mediated apoptosis. The comparison between our data and previous results suggest that the existence of specific interactions between a metal-based drug and AFt within the protein cage is not essential for drug encapsulation.

  • Lanthionine and Other Relevant Sulfur Amino Acid Metabolites: Detection of Prospective Uremic Toxins in Serum by Multiple Reaction Monitoring Tandem Mass Spectrometry.

    Publication Date: 01/01/2019 on Methods in molecular biology (Clifton, N.J.)
    by Perna AF, Pane F, Sepe N, Fontanarosa C, Pinto G, Zacchia M, Trepiccione F, Anishchenko E, Ingrosso D, Pucci P, Amoresano A
    DOI: 10.1007/978-1-4939-9528-8_2

    In the context of the vascular effects of hydrogen sulfide (HS), it is known that this gaseous endogenous biological modulator of inflammation, oxidative stress, etc. is a potent vasodilator. Chronic renal failure, a common disease affecting the aging population, is characterized by low levels of HS in plasma and tissues, which could mediate their typical hypertensive pattern, along with other abnormalities. Lanthionine and homolanthionine, natural non-proteinogenic amino acids, are formed as side products of HS production. Also in consideration of the intrinsic difficulties in HS measuring, these compounds have been proposed as reliable and stable markers of HS synthesis. However, in the setting of chronic renal failure patients on hemodialysis, they represent typical retention products (without ruling out the possibility of an increased intestinal synthesis) and prospective novel uremic toxins. Here, a method utilizing liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring ion mode has been developed and evaluated for the determination of these key HS metabolites in plasma, by using a triple quadrupole mass spectrometer.

  • Preparation, structure, cytotoxicity and mechanism of action of ferritin-Pt(II) terpyridine compound nanocomposites.

    Publication Date: 03/12/2018 on Nanomedicine (London, England)
    by Ferraro G, Pica A, Petruk G, Pane F, Amoresano A, Cilibrizzi A, Vilar R, Monti DM, Merlino A
    DOI: 10.2217/nnm-2018-0259

    A Pt(II)-terpyridine compound, bearing two piperidine substituents at positions 2 and 2' of the terpyridine ligand (1), is highly cytotoxic and shows a mechanism of action distinct from cisplatin. 1 has been incorporated within the ferritin nanocage (AFt).

  • Oxidative Stress Causes Enhanced Secretion of YB-1 Protein that Restrains Proliferation of Receiving Cells.

    Publication Date: 22/10/2018 on Genes
    by Guarino AM, Troiano A, Pizzo E, Bosso A, Vivo M, Pinto G, Amoresano A, Pollice A, La Mantia G, Calabrò V
    DOI: 10.3390/genes9100513

    The prototype cold-shock Y-box binding protein 1 (YB-1) is a multifunctional protein that regulates a variety of fundamental biological processes including cell proliferation and migration, DNA damage, matrix protein synthesis and chemotaxis. The plethora of functions assigned to YB-1 is strictly dependent on its subcellular localization. In resting cells, YB-1 localizes to cytoplasm where it is a component of messenger ribonucleoprotein particles. Under stress conditions, YB-1 contributes to the formation of stress granules (SGs), cytoplasmic foci where untranslated messenger RNAs (mRNAs) are sorted or processed for reinitiation, degradation, or packaging into ribonucleoprotein particles (mRNPs). Following DNA damage, YB-1 translocates to the nucleus and participates in DNA repair thereby enhancing cell survival. Recent data show that YB-1 can also be secreted and YB-1-derived polypeptides are found in plasma of patients with sepsis and malignancies. Here we show that in response to oxidative insults, YB-1 assembly in SGs is associated with an enhancement of YB-1 protein secretion. An enriched fraction of extracellular YB-1 (exYB-1) significantly inhibited proliferation of receiving cells and such inhibition was associated to a G2/M cell cycle arrest, induction of p21WAF and reduction of Np63 protein level. All together, these data show that acute oxidative stress causes sustained release of YB-1 as a paracrine/autocrine signal that stimulate cell cycle arrest.

  • FAAH-Catalyzed C-C Bond Cleavage of a New Multitarget Analgesic Drug.

    Publication Date: 04/10/2018 on ACS chemical neuroscience
    by Ligresti A, Silvestri C, Vitale RM, Martos JL, Piscitelli F, Wang JW, Allarà M, Carling RW, Luongo L, Guida F, Illiano A, Amoresano A, Maione S, Amodeo P, Woodward DF, Di Marzo V, Marino G
    DOI: 10.1021/acschemneuro.8b00315

    The discovery of extended catalytic versatilities is of great importance in both the chemistry and biotechnology fields. Fatty acid amide hydrolase (FAAH) belongs to the amidase signature superfamily and is a major endocannabinoid inactivating enzyme using an atypical catalytic mechanism involving hydrolysis of amide and occasionally ester bonds. FAAH inhibitors are efficacious in experimental models of neuropathic pain, inflammation, and anxiety, among others. We report a new multitarget drug, AGN220653, containing a carboxyamide-4-oxazole moiety and endowed with efficacious analgesic and anti-inflammatory activities, which are partly due to its capability of achieving inhibition of FAAH, and subsequently increasing the tissue concentrations of the endocannabinoid anandamide. This inhibitor behaves as a noncompetitive, slowly reversible inhibitor. Autoradiography of purified FAAH incubated with AGN220653, opportunely radiolabeled, indicated covalent binding followed by fragmentation of the molecule. Molecular docking suggested a possible nucleophilic attack by FAAH-Ser241 on the carbonyl group of the carboxyamide-4-oxazole moiety, resulting in the cleavage of the C-C bond between the oxazole and the carboxyamide moieties, instead of either of the two available amide bonds. MRM-MS analyses only detected the Ser241-assisted formation of the carbamate intermediate, thus confirming the cleavage of the aforementioned C-C bond. Quantum mechanics calculations were fully consistent with this mechanism. The study exemplifies how FAAH structural features and mechanism of action may override the binding and reactivity propensities of substrates. This unpredicted mechanism could pave the way to the future development of a completely new class of amidase inhibitors, of potential use against pain, inflammation, and mood disorders.

  • A hypothesis of sudden body fluid vaporization in the 79 AD victims of Vesuvius.

    Publication Date: 26/09/2018 on PloS one
    by Petrone P, Pucci P, Vergara A, Amoresano A, Birolo L, Pane F, Sirano F, Niola M, Buccelli C, Graziano V
    DOI: 10.1371/journal.pone.0203210

    In AD 79 the town of Herculaneum was suddenly hit and overwhelmed by volcanic ash-avalanches that killed all its remaining residents, as also occurred in Pompeii and other settlements as far as 20 kilometers from Vesuvius. New investigations on the victims' skeletons unearthed from the ash deposit filling 12 waterfront chambers have now revealed widespread preservation of atypical red and black mineral residues encrusting the bones, which also impregnate the ash filling the intracranial cavity and the ash-bed encasing the skeletons. Here we show the unique detection of large amounts of iron and iron oxides from such residues, as revealed by inductively coupled plasma mass spectrometry and Raman microspectroscopy, thought to be the final products of heme iron upon thermal decomposition. The extraordinarily rare preservation of significant putative evidence of hemoprotein thermal degradation from the eruption victims strongly suggests the rapid vaporization of body fluids and soft tissues of people at death due to exposure to extreme heat.