Angela Amoresano

Researcher of Analytical Chemistry

Name Angela
Surname Amoresano
Institution University of Naples – Federico II
Address Department of Chemical Sciences, Federico II University, Via Cintia 6, 80126, Naples, Italy
Resume Download
Angela Amoresano


  • Novel human bioactive peptides identified in Apolipoprotein B: Evaluation of their therapeutic potential.

    Publication Date: 15/04/2017 on Biochemical pharmacology
    by Gaglione R, Dell'Olmo E, Bosso A, Chino M, Pane K, Ascione F, Itri F, Caserta S, Amoresano A, Lombardi A, Haagsman HP, Piccoli R, Pizzo E, Veldhuizen EJ, Notomista E, Arciello A
    DOI: 10.1016/j.bcp.2017.01.009

    Host defence peptides (HDPs) are short, cationic amphipathic peptides that play a key role in the response to infection and inflammation in all complex life forms. It is increasingly emerging that HDPs generally have a modest direct activity against a broad range of microorganisms, and that their anti-infective properties are mainly due to their ability to modulate the immune response. Here, we report the recombinant production and characterization of two novel HDPs identified in human Apolipoprotein B (residues 887-922) by using a bioinformatics method recently developed by our group. We focused our attention on two variants of the identified HDP, here named r(P)ApoBL and r(P)ApoBS, 38- and 26-residue long, respectively. Both HDPs were found to be endowed with a broad-spectrum antimicrobial activity while they show neither toxic nor haemolytic effects towards eukaryotic cells. Interestingly, both HDPs were found to display a significant anti-biofilm activity, and to act in synergy with either commonly used antibiotics or EDTA. The latter was selected for its ability to affect bacterial outer membrane permeability, and to sensitize bacteria to several antibiotics. Circular dichroism analyses showed that SDS, TFE, and LPS significantly alter r(P)ApoBL conformation, whereas slighter or no significant effects were detected in the case of r(P)ApoBS peptide. Interestingly, both ApoB derived peptides were found to elicit anti-inflammatory effects, being able to mitigate the production of pro-inflammatory interleukin-6 and nitric oxide in LPS induced murine macrophages. It should also be emphasized that r(P)ApoBL peptide was found to play a role in human keratinocytes wound closure in vitro. Altogether, these findings open interesting perspectives on the therapeutic use of the herein identified HDPs.

  • X-ray Structure of the Carboplatin-Loaded Apo-Ferritin Nanocage.

    Publication Date: 28/02/2017 on ACS medicinal chemistry letters
    by Pontillo N, Ferraro G, Helliwell JR, Amoresano A, Merlino A
    DOI: 10.1021/acsmedchemlett.7b00025

    The second-generation Pt anticancer agent carboplatin (CBDCA) was encapsulated within the apo horse spleen ferritin (AFt) nanocage, and the X-ray structure of the drug-loaded protein was refined at 1.49 Å resolution. Two Pt binding sites, different from the one observed in the cisplatin-encapsulated AFt, were identified in Ft subunits by inspection of anomalous electron density maps at two wavelengths and difference Fourier electron density maps, which provide the necessary sensitivity to discriminate between Pt from CBDCA and Cd ions that are present in the crystallization conditions. Pt centers coordinate to the NE2 atom of His49 and to the NE2 atom of His132, both on the inner surface of the Ft nanocage.

  • Formyl peptide receptor 1 suppresses gastric cancer angiogenesis and growth by exploiting inflammation resolution pathways.

    Publication Date: 21/02/2017 on Oncoimmunology
    by Prevete N, Liotti F, Illiano A, Amoresano A, Pucci P, de Paulis A, Melillo RM
    DOI: 10.1080/2162402X.2017.1293213

    Chronic inflammation can result from inadequate engagement of resolution mechanisms, mainly accomplished by specialized pro-resolving mediators (SPMs) arising from the metabolic activity of lipoxygenases (ALOX5/15) on ω-6 or ω-3 essential polyunsaturated fatty acids (PUFA). We previously demonstrated that formyl peptide receptor 1 (FPR1) suppresses gastric cancer (GC) by inhibiting its inflammatory/angiogenic potential. In this study, we asked whether FPR1 exploits inflammation resolution pathways to suppress GC angiogenesis and growth. Here, we demonstrate that genetic or pharmacologic modulation of FPR1 in GC cells regulated ALOX5/15 expression and production of the SPMs Resolvin D1 (RvD1) and Lipoxin B4 (LXB4). SPM treatment of GC cells abated their angiogenic potential. Genetic deletion of ALOX15 or of the RvD1 receptor GPR32 increased the angiogenic and tumorigenic activity of GC cells thereby mimicking FPR1 loss. Deletion/inhibition of ALOX5/15 or GPR32 blocked FPR1-mediated anti-angiogenic activities, indicating that ALOX5/15 and GPR32 are required for FPR1's pro-resolving action. An ω-3- or ω-6-enriched diet enforced SPM endogenous production in mice and inhibited growth of shFPR1 GC xenografts by suppressing their angiogenic activity. These data implicate that FPR1 and/or pro-resolving pathway components might be used as risk/prognostic markers for GC; ω-6/3-enriched diets, and targeting FPR1 or SPM machinery may be exploited for GC management.

  • Profiling Carbonylated Proteins in Heart and Skeletal Muscle Mitochondria from Trained and Untrained Mice.

    Publication Date: 07/10/2016 on Journal of proteome research
    by Carpentieri A, Gamberi T, Modesti A, Amoresano A, Colombini B, Nocella M, Bagni MA, Fiaschi T, Barolo L, Gulisano M, Magherini F
    DOI: 10.1021/acs.jproteome.6b00475

    Understanding the relationship between physical exercise, reactive oxygen species, and skeletal muscle modification is important in order to better identify the benefits or the damages that appropriate or inappropriate exercise can induce. Heart and skeletal muscles have a high density of mitochondria with robust energetic demands, and mitochondria plasticity has an important role in both the cardiovascular system and skeletal muscle responses. The aim of this study was to investigate the influence of regular physical activity on the oxidation profiles of mitochondrial proteins from heart and tibialis anterior muscles. To this end, we used the mouse as animal model. Mice were divided into two groups: untrained and regularly trained. The carbonylated protein pattern was studied by two-dimensional gel electrophoresis followed by Western blot with anti-dinitrophenyl hydrazone antibodies. Mass spectrometry analysis allowed the identification of several different protein oxidation sites, including methionine, cysteine, proline, and leucine residues. A large number of oxidized proteins were found in both untrained and trained animals. Moreover, mitochondria from skeletal muscles and heart showed almost the same carbonylation pattern. Interestingly, exercise training seems to increase the carbonylation level mainly of mitochondrial proteins from skeletal muscle.

  • Gold-based drug encapsulation within a ferritin nanocage: X-ray structure and biological evaluation as a potential anticancer agent of the Auoxo3-loaded protein.

    Publication Date: 21/07/2016 on Chemical communications (Cambridge, England)
    by Ferraro G, Monti DM, Amoresano A, Pontillo N, Petruk G, Pane F, Cinellu MA, Merlino A
    DOI: 10.1039/c6cc02516a

    Auoxo3, a cytotoxic gold(iii) compound, was encapsulated within a ferritin nanocage. Inductively coupled plasma mass spectrometry, circular dichroism, UV-Vis absorption spectroscopy and X-ray crystallography confirm the potential-drug encapsulation. The structure shows that naked Au(i) ions bind to the side chains of Cys48, His49, His114, His114 and Cys126, Cys126, His132, His147. The gold-encapsulated nanocarrier has a cytotoxic effect on different aggressive human cancer cells, whereas it is significantly less cytotoxic for non-tumorigenic cells.

  • Divergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients.

    Publication Date: 01/07/2016 on Biochimie
    by Perna AF, Di Nunzio A, Amoresano A, Pane F, Fontanarosa C, Pucci P, Vigorito C, Cirillo G, Zacchia M, Trepiccione F, Ingrosso D
    DOI: 10.1016/j.biochi.2016.04.018

    Dialysis patients display a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity. Among uremic toxins, homocysteine and cysteine are both substrates of cystathionine β-synthase and cystathionine γ-lyase in hydrogen sulfide biosynthesis, leading to the formation of two sulfur metabolites, lanthionine and homolanthionine, considered stable indirect biomarkers of its production. Hydrogen sulfide is involved in the modulation of multiple pathophysiological responses. In uremia, we have demonstrated low plasma total hydrogen sulfide levels, due to reduced cystathionine γ-lyase expression. Plasma hydrogen sulfide levels were measured in hemodialysis patients and healthy controls with three different techniques in comparison, allowing to discern the different pools of this gas. The protein-bound (the one thought to be the most active) and acid-labile forms are significantly decreased, while homolanthionine, but especially lanthionine, accumulate in the blood of uremic patients. The hemodialysis regimen plays a role in determining sulfur compounds levels, and lanthionine is partially removed by a single dialysis session. Lanthionine inhibits hydrogen sulfide production in cell cultures under conditions comparable to in vivo ones. We therefore propose that lanthionine is a novel uremic toxin. The possible role of high lanthionine as a contributor to the genesis of hyperhomocysteinemia in uremia is discussed.

  • Effect of temperature on the interaction of cisplatin with the model protein hen egg white lysozyme.

    Publication Date: 01/07/2016 on Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
    by Ferraro G, Pica A, Russo Krauss I, Pane F, Amoresano A, Merlino A
    DOI: 10.1007/s00775-016-1352-0

    The products of the reaction between cisplatin (CDDP) and the model protein hen egg white lysozyme (HEWL) at 20, 37 and 55 °C in pure water were studied by UV-Vis absorption spectroscopy, intrinsic fluorescence and circular dichroism, dynamic and electrophoretic light scattering and inductively coupled plasma mass spectrometry. X-ray structures were also solved for the adducts formed at 20 and 55 °C. Data demonstrate that high temperature facilitates the formation of CDDP-HEWL adducts, where Pt atoms bind ND1 atom of His15 or NE2 atom of His15 and NH1 atom of Arg14. Our study suggests that high human body temperature (fever) could increase the rate of drug binding to proteins thus enhancing possible toxic side effects related to CDDP administration.

  • An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts.

    Publication Date: 01/07/2016 on The New phytologist
    by Vannini C, Carpentieri A, Salvioli A, Novero M, Marsoni M, Testa L, de Pinto MC, Amoresano A, Ortolani F, Bracale M, Bonfante P
    DOI: 10.1111/nph.13895

    Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal-endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B-) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signalling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B-. A shift towards pentose phosphate metabolism was detected in B-. Quantification of carbonylated proteins indicated that the B- line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal-plant interactions.

  • Identification of p38 MAPK and JNK as new targets for correction of Wilson disease-causing ATP7B mutants.

    Publication Date: 01/06/2016 on Hepatology (Baltimore, Md.)
    by Chesi G, Hegde RN, Iacobacci S, Concilli M, Parashuraman S, Festa BP, Polishchuk EV, Di Tullio G, Carissimo A, Montefusco S, Canetti D, Monti M, Amoresano A, Pucci P, van de Sluis B, Lutsenko S, Luini A, Polishchuk RS
    DOI: 10.1002/hep.28398

    Wilson disease (WD) is an autosomal recessive disorder that is caused by the toxic accumulation of copper (Cu) in the liver. The ATP7B gene, which is mutated in WD, encodes a multitransmembrane domain adenosine triphosphatase that traffics from the trans-Golgi network to the canalicular area of hepatocytes, where it facilitates excretion of excess Cu into the bile. Several ATP7B mutations, including H1069Q and R778L that are two of the most frequent variants, result in protein products, which, although still functional, remain in the endoplasmic reticulum. Thus, they fail to reach Cu excretion sites, resulting in the toxic buildup of Cu in the liver of WD patients. Therefore, correcting the location of these mutants by leading them to the appropriate functional sites in the cell should restore Cu excretion and would be beneficial to help large cohorts of WD patients. However, molecular targets for correction of endoplasmic reticulum-retained ATP7B mutants remain elusive. Here, we show that expression of the most frequent ATP7B mutant, H1069Q, activates p38 and c-Jun N-terminal kinase signaling pathways, which favor the rapid degradation of the mutant. Suppression of these pathways with RNA interference or specific chemical inhibitors results in the substantial rescue of ATP7B(H1069Q) (as well as that of several other WD-causing mutants) from the endoplasmic reticulum to the trans-Golgi network compartment, in recovery of its Cu-dependent trafficking, and in reduction of intracellular Cu levels.

  • Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification.

    Publication Date: 01/04/2016 on Food chemistry
    by Lettera V, Pezzella C, Cicatiello P, Piscitelli A, Giacobelli VG, Galano E, Amoresano A, Sannia G
    DOI: 10.1016/j.foodchem.2015.10.074

    The clarification step represents, in fruit juices industries, a bottleneck process because residual phenols cause severe haze formation affecting juice quality and impairing customers acceptance. An enzymatic step can be efficiently integrated in the process, and use of immobilized enzymes entails an economical advantage. In this work, covalent immobilization of recombinant POXA1b laccase from Pleurotus ostreatus on epoxy activated poly(methacrylate) beads was optimized thanks to a Response Surface Methodologies approach. Through regression analysis the process was well fitted by a quadratic polynomial equation (R(2)=0.9367, adjusted R(2)=0.8226) under which laccase activity reached 2000 ± 100 Ug(-1) of beads, with an immobilization efficiency of 98%. The immobilized biocatalyst was characterized and then tested in fruit juice clarification reaching up to 45% phenol reduction, without affecting health-effective flavanones content. Furthermore, laccase treated juice displays an improved sensory profile, due to the reduction of vinyl guaiacol, a potent off-flavor possessing a peppery/spicy aroma.