-
Publication Date:
01/03/2018
on Free radical biology & medicine
by Butturini E, Cozzolino F, Boriero D, Carcereri de Prati A, Monti M, Rossin M, Canetti D, Cellini B, Pucci P, Mariotto S
DOI: 10.1016/j.freeradbiomed.2018.02.005
STAT1 and STAT3 are two transcription factors involved in a lot of cellular functions such as immune response, proliferation, apoptosis, and cell survival. A number of literature evidences described a yin-yang relationship between activation of STAT1 and STAT3 in neurodegenerative disorders where STAT1 exerts a pro-apoptotic effect whereas STAT3 shows neuroprotective properties through the inhibition of apoptosis. Although the role of oxidative-stress in the pathogenesis of neurodegeneration is clearly described, its influence in the regulation of these pathways is poorly understood. Herein, we demonstrate that HO rapidly induces phosphorylation of STAT1 whereas it is not able to influence phosphorylation of STAT3 in mouse microglia BV2 cells. The analysis of the molecular mechanism of STATs signaling reveals that HO induces S-glutathionylation of both STAT1 and STAT3. The same post-translational event exerts an opposing role in the regulation of STAT1 and STAT3 signaling. These data not only confirm redox sensibility of STAT3 signaling but also reveal for the first time that STAT1 is susceptible to redox regulation. A deep study of the molecular mechanism of STAT1 redox regulation, identifies Cys324 and Cys492 as the main targets of S-glutathionylation and confirms that S-glutathionylation does not impair JAK2 mediated STAT1 tyrosine phosphorylation. These results demonstrate that both phosphorylation and glutathionylation contribute to activation of STAT1 during oxidative stress and underline that the same post-translation event exerts an opposing role in the regulation of STAT1 and STAT3 signaling in microglia cells.
-
Publication Date:
04/10/2017
on PloS one
by Kondili LA, Gaeta GB, Brunetto MR, Di Leo A, Iannone A, Santantonio TA, Giammario A, Raimondo G, Filomia R, Coppola C, Amoruso DC, Blanc P, Del Pin B, Chemello L, Cavalletto L, Morisco F, Donnarumma L, Rumi MG, Gasbarrini A, Siciliano M, Massari M, Corsini R, Coco B, Madonia S, Cannizzaro M, Zignego AL, Monti M, Russo FP, Zanetto A, Persico M, Masarone M, Villa E, Bernabucci V, Taliani G, Biliotti E, Chessa L, Pasetto MC, Andreone P, Margotti M, Brancaccio G, Ieluzzi D, Borgia G, Zappulo E, Calvaruso V, Petta S, Falzano L, Quaranta MG, Weimer LE, Rosato S, Vella S, Giannini EG
DOI: 10.1371/journal.pone.0185728
Few data are available on the virological and clinical outcomes of advanced liver disease patients retreated after first-line DAA failure.
-
Publication Date:
27/09/2017
on Bioscience reports
by Bilancio A, Rinaldi B, Oliviero MA, Donniacuo M, Monti MG, Boscaino A, Marino I, Friedman L, Rossi F, Vanhaesebroeck B, Migliaccio A
DOI: 10.1042/BSR20171112
Inflammatory cells play key roles in restenosis upon vascular surgical procedures such as bypass grafts, angioplasty and stent deployment but the molecular mechanisms by which these cells affect restenosis remain unclear. The p110δ isoform of phosphoinositide 3-kinase (PI3K) is mainly expressed in white blood cells. Here, we have investigated whether p110δ PI3K is involved in the pathogenesis of restenosis in a mouse model of carotid injury, which mimics the damage following arterial grafts. We used mice in which p110δ kinase activity has been disabled by a knockin (KI) point mutation in its ATP-binding site (p110δ(D910A/D910A) PI3K mice). Wild-type (WT) and p110δ(D910A/D910A) mice were subjected to longitudinal carotid injury. At 14 and 30 days after carotid injury, mice with inactive p110δ showed strongly decreased infiltration of inflammatory cells (including T lymphocytes and macrophages) and vascular smooth muscle cells (VSMCs), compared with WT mice. Likewise, PI-3065, a p110δ-selective PI3K inhibitor, almost completely prevented restenosis after artery injury. Our data showed that p110δ PI3K plays a main role in promoting neointimal thickening and inflammatory processes during vascular stenosis, with its inhibition providing significant reduction in restenosis following carotid injury. p110δ-selective inhibitors, recently approved for the treatment of human B-cell malignancies, therefore, present a new therapeutic opportunity to prevent the restenosis upon artery injury.
-
Publication Date:
13/09/2017
on Journal of proteome research
by Alberio T, Pieroni L, Ronci M, Banfi C, Bongarzone I, Bottoni P, Brioschi M, Caterino M, Chinello C, Cormio A, Cozzolino F, Cunsolo V, Fontana S, Garavaglia B, Giusti L, Greco V, Lucacchini A, Maffioli E, Magni F, Monteleone F, Monti M, Monti V, Musicco C, Petrosillo G, Porcelli V, Saletti R, Scatena R, Soggiu A, Tedeschi G, Zilocchi M, Roncada P, Urbani A, Fasano M
DOI: 10.1021/acs.jproteome.7b00350
The Mitochondrial Human Proteome Project aims at understanding the function of the mitochondrial proteome and its crosstalk with the proteome of other organelles. Being able to choose a suitable and validated enrichment protocol of functional mitochondria, based on the specific needs of the downstream proteomics analysis, would greatly help the researchers in the field. Mitochondrial fractions from ten model cell lines were prepared using three enrichment protocols and analyzed on seven different LC-MS/MS platforms. All data were processed using neXtProt as reference database. The data are available for the Human Proteome Project purposes through the ProteomeXchange Consortium with the identifier PXD007053. The processed data sets were analyzed using a suite of R routines to perform a statistical analysis and to retrieve subcellular and submitochondrial localizations. Although the overall number of identified total and mitochondrial proteins was not significantly dependent on the enrichment protocol, specific line to line differences were observed. Moreover, the protein lists were mapped to a network representing the functional mitochondrial proteome, encompassing mitochondrial proteins and their first interactors. More than 80% of the identified proteins resulted in nodes of this network but with a different ability in coisolating mitochondria-associated structures for each enrichment protocol/cell line pair.
-
Publication Date:
05/09/2017
on Biochimica et biophysica acta
by Del Giudice R, Domingo-Espín J, Iacobucci I, Nilsson O, Monti M, Monti DM, Lagerstedt JO
DOI: 10.1016/j.bbadis.2017.09.001
Twenty Apolipoprotein A-I (ApoA-I) variants are responsible for a systemic hereditary amyloidosis in which protein fibrils can accumulate in different organs, leading to their failure. Several ApoA-I amyloidogenic mutations are also associated with hypoalphalipoproteinemia, low ApoA-I and high-density lipoprotein (HDL)-cholesterol plasma levels; however, subjects affected by ApoA-I-related amyloidosis do not show a higher risk of cardiovascular diseases (CVD). The structural features, the lipid binding properties and the functionality of four ApoA-I amyloidogenic variants were therefore inspected in order to clarify the paradox observed in the clinical phenotype of the affected subjects. Our results show that ApoA-I amyloidogenic variants are characterized by a different oligomerization pattern and that the position of the mutation in the ApoA-I sequence affects the molecular structure of the formed HDL particles. Although lipidation increases ApoA-I proteins stability, all the amyloidogenic variants analyzed show a lower affinity for lipids, both in vitro and in ex vivo mouse serum. Interestingly, the lower efficiency at forming HDL particles is compensated by a higher efficiency at catalysing cholesterol efflux from macrophages. The decreased affinity of ApoA-I amyloidogenic variants for lipids, together with the increased efficiency in the cholesterol efflux process, could explain why, despite the unfavourable lipid profile, patients affected by ApoA-I related amyloidosis do not show a higher CVD risk.
-
Publication Date:
27/04/2017
on Scientific reports
by Iaconis D, Monti M, Renda M, van Koppen A, Tammaro R, Chiaravalli M, Cozzolino F, Pignata P, Crina C, Pucci P, Boletta A, Belcastro V, Giles RH, Maria Surace E, Gallo S, Pende M, Franco B
DOI: 10.1038/s41598-017-01156-x
Protein synthesis is traditionally associated with specific cytoplasmic compartments. We now show that OFD1, a centrosomal/basal body protein, interacts with components of the Preinitiation complex of translation (PIC) and of the eukaryotic Initiation Factor (eIF)4F complex and modulates the translation of specific mRNA targets in the kidney. We demonstrate that OFD1 cooperates with the mRNA binding protein Bicc1 to functionally control the protein synthesis machinery at the centrosome where also the PIC and eIF4F components were shown to localize in mammalian cells. Interestingly, Ofd1 and Bicc1 are both involved in renal cystogenesis and selected targets were shown to accumulate in two models of inherited renal cystic disease. Our results suggest a possible role for the centrosome as a specialized station to modulate translation for specific functions of the nearby ciliary structures and may provide functional clues for the understanding of renal cystic disease.
-
Publication Date:
01/04/2017
on Brain : a journal of neurology
by Zollo M, Ahmed M, Ferrucci V, Salpietro V, Asadzadeh F, Carotenuto M, Maroofian R, Al-Amri A, Singh R, Scognamiglio I, Mojarrad M, Musella L, Duilio A, Di Somma A, Karaca E, Rajab A, Al-Khayat A, Mohan Mohapatra T, Eslahi A, Ashrafzadeh F, Rawlins LE, Prasad R, Gupta R, Kumari P, Srivastava M, Cozzolino F, Kumar Rai S, Monti M, Harlalka GV, Simpson MA, Rich P, Al-Salmi F, Patton MA, Chioza BA, Efthymiou S, Granata F, Di Rosa G, Wiethoff S, Borgione E, Scuderi C, Mankad K, Hanna MG, Pucci P, Houlden H, Lupski JR, Crosby AH, Baple EL
DOI: 10.1093/brain/awx014
PRUNE is a member of the DHH (Asp-His-His) phosphoesterase protein superfamily of molecules important for cell motility, and implicated in cancer progression. Here we investigated multiple families from Oman, India, Iran and Italy with individuals affected by a new autosomal recessive neurodevelopmental and degenerative disorder in which the cardinal features include primary microcephaly and profound global developmental delay. Our genetic studies identified biallelic mutations of PRUNE1 as responsible. Our functional assays of disease-associated variant alleles revealed impaired microtubule polymerization, as well as cell migration and proliferation properties, of mutant PRUNE. Additionally, our studies also highlight a potential new role for PRUNE during microtubule polymerization, which is essential for the cytoskeletal rearrangements that occur during cellular division and proliferation. Together these studies define PRUNE as a molecule fundamental for normal human cortical development and define cellular and clinical consequences associated with PRUNE mutation.
-
Publication Date:
06/02/2017
on PloS one
by Monti M, Iommelli F, De Rosa V, Carriero MV, Miceli R, Camerlingo R, Di Minno G, Del Vecchio S
DOI: 10.1371/journal.pone.0171362
Neutrophil extracellular traps (NETs), originally recognized as a host defense mechanism, were reported to promote thrombosis and metastatic dissemination of cancer cells. Here we tested the role of integrins α5β1 and ανβ3 in the adhesion of cancer cells to NETs. Neutrophil-like cells stimulated with calcium ionophore (A23187) were used as a stable source of cell-free NETs-enriched suspensions. Using NETs as an adhesion substrate, two human K562 cell lines, differentially expressing α5β1 and ανβ3 integrins, were subjected to adhesion assays in the presence or absence of DNAse 1, blocking antibodies against α5β1 or ανβ3, alone or in combination with DNAse 1, and Proteinase K. As expected DNAse 1 treatment strongly inhibited adhesion of both cell lines to NETs. An equivalent significant reduction of cell adhesion to NETs was obtained after treatment of cells with blocking antibodies against α5β1 or ανβ3 indicating that both integrins were able to mediate cell adhesion to NETs. Furthermore, the combination of DNAse 1 and anti-integrin antibody treatment almost completely blocked cell adhesion. Western blot analysis and immunoprecipitation experiments showed a dose-dependent increase of fibronectin levels in samples from stimulated neutrophil-like cells and a direct or indirect interaction of fibronectin with histone H3. Finally, co-immunolocalization studies with confocal microscopy showed that fibronectin and citrullinated histone H3 co-localize inside the web-structure of NETs. In conclusion, our study showed that α5β1 and ανβ3 integrins mediate cell adhesion to NETs by binding to their common substrate fibronectin. Therefore, in addition to mechanical trapping and aspecific adsorption of different cell types driven by DNA/histone complexes, NETs may provide specific binding sites for integrin-mediated cell adhesion of neutrophils, platelets, endothelial and cancer cells thus promoting intimate interactions among these cells.
-
Publication Date:
15/12/2016
on International journal of cardiology
by Salzano A, Marra AM, Ferrara F, Arcopinto M, Bobbio E, Valente P, Polizzi R, De Vincentiis C, Matarazzo M, Saldamarco L, Saccà F, Napoli R, Monti MG, D'Assante R, Isidori AM, Isgaard J, Ferrara N, Filardi PP, Perticone F, Vigorito C, Bossone E, Cittadini A,
DOI: 10.1016/j.ijcard.2016.09.085
-
Publication Date:
01/12/2016
on The EMBO journal
by Zito E, Buono M, Pepe S, Settembre C, Annunziata I, Surace EM, Dierks T, Monti M, Cozzolino M, Pucci P, Ballabio A, Cosma MP
DOI: 10.15252/embj.201670020