Maria Luisa Balestrieri

Professor of Biochemistry

Name Maria Luisa
Surname Balestrieri
Institution Università degli Studi della Campania Luigi Vanvitelli
E-Mail marialuisa.balestrieri@unicampania.it
Address Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
Resume Download
Maria Luisa Balestrieri

Member PUBLICATIONS

  • MicroRNA-33 and SIRT1 influence the coronary thrombus burden in hyperglycemic STEMI patients.

    Publication Date: 11/07/2019 on Journal of cellular physiology
    by D'Onofrio N, Sardu C, Paolisso P, Minicucci F, Gragnano F, Ferraraccio F, Panarese I, Scisciola L, Mauro C, Rizzo MR, Mansueto G, Varavallo F, Brunitto G, Caserta R, Tirino V, Papaccio G, Barbieri M, Paolisso G, Balestrieri ML, Marfella R
    DOI: 10.1002/jcp.29064

    Primary percutaneous coronary intervention (PPCI) is a pivotal treatment in ST-segment elevation myocardial infarction (STEMI) patients. However, in hyperglycemic-STEMI patients, the incidence of death is still significant. Here, the involvement of sirtuin 1 (SIRT1) and miR33 on the pro-inflammatory/pro-coagulable state of the coronary thrombus was investigated. Moreover, 1-year outcomes in hyperglycemic STEMI in patients subjected to thrombus aspiration before PPCI were evaluated. Results showed that hyperglycemic thrombi displayed higher size and increased miR33, reactive oxygen species, and pro-inflammatory/pro-coagulable markers. Conversely, the hyperglycemic thrombi showed a lower endothelial SIRT1 expression. Moreover, in vitro experiments on endothelial cells showed a causal effect of SIRT1 modulation on the pro-inflammatory/pro-coagulative state via hyperglycemia-induced miR33 expression. Finally, SIRT1 expression negatively correlated with STEMI outcomes. These observations demonstrate the involvement of the miR33/SIRT1 pathway in the increased pro-inflammatory and pro-coagulable state of coronary thrombi in hyperglycemic STEMI patients.

  • Short communication: Space allocation in intensive Mediterranean buffalo production influences the profile of functional biomolecules in milk and dairy products.

    Publication Date: 19/06/2019 on Journal of dairy science
    by Salzano A, Licitra F, D'Onofrio N, Balestrieri ML, Limone A, Campanile G, D'Occhio MJ, Neglia G
    DOI: 10.3168/jds.2019-16656

    The aim of the present study was to determine if space allocation influenced the concentration of biomolecules in buffalo milk and dairy products. Intensively housed buffaloes (n = 96) were randomly assigned to 2 groups according to days in milk, parity, and milk yield: group S10 had a space allocation of 10 m per buffalo and group S15 had a space allocation of 15 m per buffalo. Individual milk yield was recorded daily. Twice a month, a bulk milk sample was collected for each group, as well as whey, ricotta, and mozzarella cheese, to assess cheese yield and to conduct HPLC-electrospray ionization-tandem mass spectrometry, milk antioxidant activity, and cell viability analyses. We tested milk extracts from the 2 groups in vitro to evaluate their efficacy in counteracting endothelial oxidative damage induced by high glucose. We evaluated reproductive function in 28 buffaloes from each group using the Ovsynch-timed artificial insemination program. We observed no differences in milk quantity or quality in terms of fat, protein, or lactose, and reproductive function did not differ between the 2 groups. Compared with group S10, group S15 had higher concentrations of carnitine (56.7 ± 1.1 vs. 39.8 ± 0.7 mg/L in milk and 40.9 ± 0.8 vs. 31.7 ± 0.7 mg/L in whey), acetyl-l-carnitine (51.9 ± 0.3 vs. 39.7 ± 0.7 mg/L in milk and 41.1 ± 1.7 vs. 28.7 ± 2.6 mg/L in whey), propionyl-l-carnitine (34.8 ± 1.0 vs. 21.0 ± 0.9 mg/L in milk and 26.9 ± 0.8 vs. 17.6 ± 1.2 mg/L in whey), glycine betaine (23.1 ± 1.9 vs. 13.5 ± 1.6 mg/L in milk and 10.7 ± 0.4 vs. 7.9 ± 0.5 mg/L in whey), and δ-valerobetaine (24.2 ± 0.5 vs. 16.7 ± 0.5 mg/L in milk and 22.0 ± 0.9 vs. 15.5 ± 0.7 mg/L in whey). Group S15 also had higher total antioxidant activity than group S10 (56.7 ± 1.9 vs. 46.4 ± 1.13 mM Trolox equivalents). Co-incubation of high-glucose-treated endothelial cells with milk extracts from group S15 improved cell viability compared with cells treated with high glucose only; it also reduced intracellular lipid peroxidation (144.3 ± 0.4 vs. 177.5 ± 1.9%), reactive oxygen species (141.3 ± 0.9 vs. 189.3 ± 4.7 optical density units), and cytokine release (tumor necrosis factor-α, IL-1β, IL-6). Greater space allocation was associated with higher levels of biomolecules in buffalo milk. This could have been the result of improved welfare in buffaloes that were allocated more space.

  • Abdominal Fat SIRT6 Expression and Its Relationship with Inflammatory and Metabolic Pathways in Pre-Diabetic Overweight Patients.

    Publication Date: 06/03/2019 on International journal of molecular sciences
    by D'Onofrio N, Pieretti G, Ciccarelli F, Gambardella A, Passariello N, Rizzo MR, Barbieri M, Marfella R, Nicoletti G, Balestrieri ML, Sardu C
    DOI: 10.3390/ijms20051153

    The role of sirtuin 6 (SIRT6) in adipose abdominal tissue of pre-diabetic (pre-DM) patients is poorly known. Here, we evaluated SIRT6 expression in visceral abdominal fat of obese pre-diabetic patients and the potential effects of metformin therapy. Results indicated that obese pre-DM subjects showed low SIRT6 protein expression and high expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), peroxisome proliferator-activated receptor gamma (PPAR-γ), and sterol regulatory element-binding transcription factor 1 (SREBP-1). Obese pre-DM patients showed high values of glucose, insulin resistance (HOMA-IR), C reactive protein (CRP), nitrotyrosine, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), and low values of insulin ( < 0.05). Of note, abdominal fat tissue of obese pre-DM patients treated with metformin therapy presented higher SIRT6 expression and lower NF-κB, PPAR-γ, and SREBP-1 expression levels compared to pre-DM control group. Collectively, results show that SIRT6 is involved in the inflammatory pathway of subcutaneous abdominal fat of obese pre-DM patients and its expression responds to metformin therapy.

  • Effects of metformin therapy on COronary endothelial DYsfunction in prediabetic patients With stable angina and Non Obstructive Coronary Artery Stenosis: The CODYCE Multicenter Prospective Study.

    Publication Date: 22/02/2019 on Diabetes care
    by Sardu C, Paolisso P, Sacra C, Mauro C, Minicucci F, Portoghese M, Rizzo MR, Barbieri M, Sasso FC, D'Onofrio N, Balestrieri ML, Calabrò P, Paolisso G, Marfella R
    DOI: 10.2337/dc18-2356

    To evaluate the effect of metformin therapy on coronary endothelial function and major adverse cardiac events (MACE) in patients with prediabetes with stable angina and nonobstructive coronary stenosis (NOCS).

  • Thrombus Aspiration in Hyperglycemic Patients With High Inflammation Levels in Coronary Thrombus.

    Publication Date: 05/02/2019 on Journal of the American College of Cardiology
    by Sardu C, D'Onofrio N, Mauro C, Balestrieri ML, Marfella R
    DOI: 10.1016/j.jacc.2018.10.074
  • Antioxidant and Anti-Inflammatory Activities of Buffalo Milk δ-Valerobetaine.

    Publication Date: 20/01/2019 on Journal of agricultural and food chemistry
    by D'Onofrio N, Balestrieri A, Neglia G, Monaco A, Tatullo M, Casale R, Limone A, Balestrieri ML, Campanile G
    DOI: 10.1021/acs.jafc.8b07166

    δ-Valerobetaine (δVB), a constitutive metabolite of ruminant milk, is produced in the rumen from free dietary Nε-trimethyllysine occurring ubiquitously in vegetable kingdom. Biological role of δVB is poorly known. Here, the antioxidant and anti-inflammatory potential of buffalo milk δVB was tested in vitro during high-glucose (HG)-induced endothelial damage. Results indicated that δVB (0.5 mM) ameliorated the HG cytotoxicity (0.57±0.02 vs. 0.41±0.018 O.D. (P<0.01). Buffalo milk extracts enriched with δVB showed significant efficacy in decreasing reactive oxygen species, lipid peroxidation, and cytokine release during HG treatment compared to milk extracts alone (P<0.05). δVB reduced the HG-activated inflammatory signal by modulating SIRT1 (0.96±0.05 vs. 0.85±0.04 AU), SIRT6 (0.82±0.04 vs. 0.61±0.03 AU), and NF-κB (0.85±0.03 vs. 1.23±0.03 AU) (P<0.05). On the whole, our data show the first evidence of δVB efficacy in reducing endothelial oxidative stress and inflammation, suggesting a potential role of this betaine as a novel dietary compound with health-promoting properties.

  • Correction to: Thrombus aspiration in hyperglycemic ST-elevation myocardial infarction (STEMI) patients: clinical outcomes at 1-year follow-up.

    Publication Date: 27/12/2018 on Cardiovascular diabetology
    by Sardu C, Barbieri M, Balestrieri ML, Siniscalchi M, Paolisso P, Calabrò P, Minicucci F, Signoriello G, Portoghese M, Mone P, D'Andrea D, Gragnano F, Bellis A, Mauro C, Paolisso G, Rizzo MR, Marfella R
    DOI: 10.1186/s12933-018-0804-y

    Following publication of the original article [1], the authors reported an error in Acknowledgment section. The last sentence should read as "All authors have read and approval the submission to Cardiovascular Diabetology.

  • Thrombus aspiration in hyperglycemic ST-elevation myocardial infarction (STEMI) patients: clinical outcomes at 1-year follow-up.

    Publication Date: 29/11/2018 on Cardiovascular diabetology
    by Sardu C, Barbieri M, Balestrieri ML, Siniscalchi M, Paolisso P, Calabrò P, Minicucci F, Signoriello G, Portoghese M, Mone P, D'Andrea D, Gragnano F, Bellis A, Mauro C, Paolisso G, Rizzo MR, Marfella R
    DOI: 10.1186/s12933-018-0795-8

    We evaluate whether the thrombus aspiration (TA) before primary percutaneous coronary intervention (PPCI) may improve STEMI outcomes in hyperglycemic patients.

  • Ruminant meat and milk contain δ-valerobetaine, another precursor of trimethylamine N-oxide (TMAO) like γ-butyrobetaine.

    Publication Date: 15/09/2018 on Food chemistry
    by Servillo L, D'Onofrio N, Giovane A, Casale R, Cautela D, Castaldo D, Iannaccone F, Neglia G, Campanile G, Balestrieri ML
    DOI: 10.1016/j.foodchem.2018.03.114

    Quaternary ammonium compounds containing N-trimethylamino moiety, such as choline derivatives and carnitine, abundant in meat and dairy products, are metabolic precursors of trimethylamine (TMA). A similar fate is reported for N-trimethyllysine and γ-butyrobetaine. With the aim at investigating the metabolic profile of such metabolites in most employed animal dietary sources, HPLC-ESI-MS/MS analyses on ruminant and non-ruminant milk and meat were performed. Results demonstrate, for the first time, the presence of δ-valerobetaine, occurring at levels higher than γ-butyrobetaine in all ruminant samples compared to non-ruminants. Demonstration of δ-valerobetaine metabolic origin, surprisingly, showed that it originates from rumen through the transformation of dietary N-trimethyllysine. These results highlight our previous findings showing the ubiquity of free N-trimethyllysine in vegetable kingdom. Furthermore, δ-valerobetaine, similarly to γ-butyrobetaine, can be degraded by host gut microbiota producing TMA, precursor of the proatherogenic trimethylamine N-oxide (TMAO), unveiling its possible role in the biosynthetic route of TMAO.

  • Inflammatory Cytokines and SIRT1 Levels in Subcutaneous Abdominal Fat: Relationship With Cardiac Performance in Overweight Pre-diabetics Patients.

    Publication Date: 21/08/2018 on Frontiers in physiology
    by Sardu C, Pieretti G, D'Onofrio N, Ciccarelli F, Paolisso P, Passavanti MB, Marfella R, Cioffi M, Mone P, Dalise AM, Ferraraccio F, Panarese I, Gambardella A, Passariello N, Rizzo MR, Balestrieri ML, Nicoletti G, Barbieri M
    DOI: 10.3389/fphys.2018.01030

    In obese patients the superficial adipose tissue expresses cytokines, and sirtuins, that may affect myocardial function. In this study, we investigated the effect of metformin therapy added to a hypocaloric diet on the inflammatory pattern and cardiac performance (MPI) in obese patients with pre-diabetic condition. Fifty-eight obese patients that were enrolled for abdominoplastic surgery were divided into patients with pre-diabetic condition (n 40) and normo-glycemic patients (n18). Patients with pre-diabetic condition were randomly assigned to metformin therapy added to a hypocaloric diet (group 1, n 20) or to a hypocaloric diet therapy alone (group 2, n20). Patients with normo-glycemic condition were assigned to a hypocaloric diet therapy. During enrollment, obese patients with a pre-diabetic condition (group 1 and 2) presented higher glucose values, lower values of insulin, and higher values of the homeostasis model for the assessment of insulin resistance (HOMA-IR) than obese patients with normo-glycemic condition(group 3). In addition, they had higher values of C Reactive protein (CRP), interleukin 6 (IL6), and lower values of sirtuin 1(SIRT1). In the 12th month of the follow-up, metformin therapy induced in patients with pre-diabetic condition (group 1) a significant reduction of glucose values, HOMA-IR, and inflammatory markers such as CRP (1.04 ± 0.48 vs. 0.49 ± 0.02 mmol/L, < 0.05), IL6 (4.22 ± 0.45 vs. 3.33 ± 0.34 pg/ml, < 0.05), TNFα (6.95 ± 0.59 vs. 5.15 ± 0.44 pg/ml, < 0.05), and Nitrotyrosine (5,214 ± 0,702 vs. 2,151 ± 0,351 nmol/l, < 0.05). This was associated with a significant reduction of Intima-media thickness (1.01 ± 0.15 vs. 0.86 ± 0.15 mm, < 0.05), Septum (14 ± 2.5 vs. 10.5 ± 2 mm, < 0.05), Posterior wall (11 ± 1.5 vs. 8 ± 1 mm, < 0.05), LV mass (192.5 ± 49.5 vs. 133.2 ± 37.6 g, < 0.05) and of MPI (0.58 ± 0.03 vs. 0.38 ± 0.02, < 0.05). At 12 months of follow-up, group 2 experienced only a reduction of cholesterol (4.15 ± 0.94 vs. 4.51 ± 0.88 mmol/L, < 0.05) and triglycerides (1.71 ± 1.18 vs. 1.83 ± 0.54 mmol/L, < 0.05). At 12 months of follow-up, group 3 experienced a significant reduction of inflammatory markers, and also of echographic parameters, associated with amelioration of myocardial performance. To date, IL6 expression was related to higher values of left ventricle mass (-value 0.272, -value 0.039), and to higher IMT (-value 0.272, -value 0.039), such as those observed for CRP (-value 0.308, -value 0.021), for glucose blood values (-value 0.449, -value 0.001), and for HOMA-IR (-value 0.366, -value 0.005). An inverse correlation was found between subcutaneous fat expression of SIRT1 and myocardial performance index (-value-0.236, -value 0.002). In obese patients with pre-diabetic condition a metformin therapy may reduce inflammation and oxidative stress, and this may be associated with the amelioration of the cardiac performance. Clinical research trial number: NCT03439592.