Luca Colucci-D'Amato

Professor of General Pathology

Name Luca
Surname Colucci-D'Amato
Institution Università degli Studi della Campania Luigi Vanvitelli
E-Mail luca.colucci@unicampania.it
Address Department of Environmental, Biological, Pharmaceutical Science and Technology, "Luigi Vanvitelli", Caserta, Italy
Luca Colucci-D'Amato

Member PUBLICATIONS

  • Neuronal differentiation dictates estrogen-dependent survival and ERK1/2 kinetic by means of caveolin-1.

    Publication Date: 28/10/2014 on PloS one
    by Volpicelli F, Caiazzo M, Moncharmont B, di Porzio U, Colucci-D'Amato L
    DOI: 10.1371/journal.pone.0109671

    Estrogens promote a plethora of effects in the CNS that profoundly affect both its development and mature functions and are able to influence proliferation, differentiation, survival and neurotransmission. The biological effects of estrogens are cell-context specific and also depend on differentiation and/or proliferation status in a given cell type. Furthermore, estrogens activate ERK1/2 in a variety of cellular types. Here, we investigated whether ERK1/2 activation might be influenced by estrogens stimulation according to the differentiation status and the molecular mechanisms underling this phenomenon. ERK1/2 exert an opposing role on survival and death, as well as on proliferation and differentiation depending on different kinetics of phosphorylation. Hence we report that mesencephalic primary cultures and the immortalized cell line mes-c-myc A1 express estrogen receptor α and activate ERK1/2 upon E2 stimulation. Interestingly, following the arrest of proliferation and the onset of differentiation, we observe a change in the kinetic of ERKs phosphorylation induced by estrogens stimulation. Moreover, caveolin-1, a main constituent of caveolae, endogenously expressed and co-localized with ER-α on plasma membrane, is consistently up-regulated following differentiation and cell growth arrest. In addition, we demonstrate that siRNA-induced caveolin-1 down-regulation or disruption by means of ß-cyclodextrin treatment changes ERK1/2 phosphorylation in response to estrogens stimulation. Finally, caveolin-1 down-regulation abolishes estrogens-dependent survival of neurons. Thus, caveolin-1 appears to be an important player in mediating, at least, some of the non-genomic action of estrogens in neurons, in particular ERK1/2 kinetics of activation and survival.

  • Secretome profiling of differentiated neural mes-c-myc A1 cell line endowed with stem cell properties.

    Publication Date: 01/11/2013 on Biochimica et biophysica acta
    by Severino V, Farina A, Colucci-D'Amato L, Reccia MG, Volpicelli F, Parente A, Chambery A
    DOI: 10.1016/j.bbapap.2012.12.005

    Neural stem cell proliferation and differentiation play a crucial role in the formation and wiring of neuronal connections forming neuronal circuits. During neural tissues development, a large diversity of neuronal phenotypes is produced from neural precursor cells. In recent years, the cellular and molecular mechanisms by which specific types of neurons are generated have been explored with the aim to elucidate the complex events leading to the generation of different phenotypes via distinctive developmental programs that control self-renewal, differentiation, and plasticity. The extracellular environment is thought to provide instructive influences that actively induce the production of specific neuronal phenotypes. In this work, the secretome profiling of differentiated neural mes-c-myc A1 (A1) cell line endowed with stem cell properties was analyzed by applying a shotgun LC-MS/MS approach. The results provide a list of secreted molecules with potential relevance for the functional and biological features characterizing the A1 neuronal phenotype. Proteins involved in biological processes closely related to nervous system development including neurites growth, differentiation of neurons and axonogenesis were identified. Among them, proteins belonging to extracellular matrix and cell-adhesion complexes as well as soluble factors with well established neurotrophic properties were detected. The presented work provides the basis to clarify the complex extracellular protein networks implicated in neuronal differentiation and in the acquisition of the neuronal phenotype. This article is part of a Special Issue entitled: An Updated Secretome.

  • Mutant huntingtin regulates EGF receptor fate in non-neuronal cells lacking wild-type protein.

    Publication Date: 01/01/2013 on Biochimica et biophysica acta
    by Melone MA, Calarco A, Petillo O, Margarucci S, Colucci-D'Amato L, Galderisi U, Koverech G, Peluso G
    DOI: 10.1016/j.bbadis.2012.09.001

    Huntingtin (htt) is a scaffold protein localized at the subcellular level and is involved in coordinating the activity of several protein for signaling and intracellular transport. The emerging properties of htt in intracellular trafficking prompted us to study the role of mutant htt (polyQ-htt) in the intracellular fate of epidermal growth factor receptor (EGFR), whose activity seems to be strictly regulated by htt. In particular, to evaluate whether protein trafficking dysfunction occurs in non-neuronal cells in the absence of functional htt, we monitored the EGFR protein in fibroblasts from homozygotic HD patients and their healthy counterpart. We found that polyQ-htt controls EGFR degradation and recycling. Lack of wild-type htt caused alteration of the ubiquitination cycle, formation of EGFR-incorporating high-molecular weight protein aggregates and abnormal EGFR distribution in endosomes of the degradation and recycling pathways after EGF stimulation. PolyQ-htt-induced alteration of EGFR trafficking affected cell migration and proliferation, at least in part, through inhibition of ERK signaling. To our knowledge the data here reported represent the first signaling and phenotypic characterization of polyQ-htt involvement in the modulation of growth factor stimulation in non-neuronal cells.

  • Tryptophan hydroxylase 2 (TPH2) in a neuronal cell line: modulation by cell differentiation and NRSF/rest activity.

    Publication Date: 01/12/2012 on Journal of neurochemistry
    by Gentile MT, Nawa Y, Lunardi G, Florio T, Matsui H, Colucci-D'Amato L
    DOI: 10.1111/jnc.12004

    Serotonin (5-HT) is a neurotransmitter involved in many aspects of the neuronal function. The synthesis of 5-HT is initiated by the hydroxylation of tryptophan, catalyzed by tryptophan hydroxylase (TPH). Two isoforms of TPH (TPH1 and TPH2) have been identified, with TPH2 almost exclusively expressed in the brain. Following TPH2 discovery, it was reported that polymorphisms of both gene and non-coding regions are associated with a spectrum of psychiatric disorders. Thus, insights into the mechanisms that specifically regulate TPH2 expression and its modulation by exogenous stimuli may represent a new therapeutic approach to modify serotonergic neurotransmission. To this aim, a CNS-originated cell line expressing TPH2 endogenously represents a valid model system. In this study, we report that TPH2 transcript and protein are modulated by neuronal differentiation in the cell line A1 mes-c-myc (A1). Moreover, we show luciferase activity driven by the human TPH2 promoter region and demonstrate that upon mutation of the NRSF/REST responsive element, the promoter activity strongly increases with cell differentiation. Our data suggest that A1 cells could represent a model system, allowing an insight into the mechanisms of regulation of TPH2 and to identify novel therapeutic targets in the development of drugs for the management of psychiatric disorders.

  • Role of cytosolic calcium-dependent phospholipase A2 in Alzheimer's disease pathogenesis.

    Publication Date: 01/06/2012 on Molecular neurobiology
    by Gentile MT, Reccia MG, Sorrentino PP, Vitale E, Sorrentino G, Puca AA, Colucci-D'Amato L
    DOI: 10.1007/s12035-012-8279-4

    Phospholipases (PLA2s) are a superfamily of enzymes characterized by the ability to specifically hydrolyze the sn-2 ester bond of phospholipids generating arachidonic acid, utilized in inflammatory responses, and lysophospholipids involved in the control of cell membrane remodeling and fluidity. PLA2s have been so far considered a crucial element in the etiopathogenesis of several neurological diseases such as cerebral ischemia, multiple sclerosis, Parkinson's disease, and Alzheimer's disease (AD). In AD, the role of beta-amyloid (Aβ) fragments is well established although still more elusive are the molecular events of the cascade that from the Aβ accumulation leads to neurodegeneration with its clinical manifestations. However, it is well known that inflammation and alteration of lipid metabolism are common features of AD brains. Findings obtained from in vitro studies, animal models, and human brain imaging analysis point towards cPLA2 as a key molecule in the onset and maintenance of the neurodegenerative mechanism(s) of AD. In this review, we have focused on the molecular and biological evidence of the involvement of cPLA2s in the pathogenesis of AD. An insight into the molecular mechanism(s) underlying the action and the regulation of cPLA2 is of tremendous interest in the pharmaceutical and biotechnology industry in developing selective and potent inhibitors able to modulate the onset and/or the outcome of AD.

  • Changes in the expression of extracellular regulated kinase (ERK 1/2) in the R6/2 mouse model of Huntington's disease after phosphodiesterase IV inhibition.

    Publication Date: 01/04/2012 on Neurobiology of disease
    by Fusco FR, Anzilotti S, Giampà C, Dato C, Laurenti D, Leuti A, Colucci D'Amato L, Perrone L, Bernardi G, Melone MA
    DOI: 10.1016/j.nbd.2012.01.011

    The mitogen-activated protein kinases (MAPKs) superfamily comprises three major signaling pathways: the extracellular signal-regulated protein kinases (ERKs), the c-Jun N-terminal kinases or stress-activated protein kinases (JNKs/SAPKs) and the p38 family of kinases. ERK 1/2 signaling has been implicated in a number of neurodegenerative disorders, including Huntington's disease (HD). Phosphorylation patterns of ERK 1/2 and JNK are altered in cell models of HD. In this study, we aimed at studying the correlations between ERK 1/2 and the neuronal vulnerability to HD degeneration in the R6/2 transgenic mouse model of HD. Single and double-label immunofluorescence for phospho-ERK (pERK, the activated form of ERK) and for each of the striatal neuronal markers were employed on perfusion-fixed brain sections from R6/2 and wild-type mice. Moreover, Phosphodiesterase 4 inhibition through rolipram was used to study the effects on pERK expression in the different types of striatal neurons. We completed our study with western blot analysis. Our study shows that pERK levels increase with age in the medium spiny striatal neurons and in the parvalbumin interneurons, and that rolipram counteracts such increase in pERK. Conversely, cholinergic and somatostatinergic interneurons of the striatum contain higher levels of pERK in the R6/2 mice compared to the controls. Rolipram induces an increase in pERK expression in these interneurons. Thus, our study confirms and extends the concept that the expression of phosphorylated ERK 1/2 is related to neuronal vulnerability and is implicated in the pathophysiology of cell death in HD.

  • Amyloid-β protein precursor regulates phosphorylation and cellular compartmentalization of microtubule associated protein tau.

    Publication Date: 01/01/2012 on Journal of Alzheimer's disease : JAD
    by Nizzari M, Barbieri F, Gentile MT, Passarella D, Caorsi C, Diaspro A, Taglialatela M, Pagano A, Colucci-D'Amato L, Florio T, Russo C
    DOI: 10.3233/JAD-2011-101590

    Tau is a multifunctional protein detected in different cellular compartments in neuronal and non-neuronal cells. When hyperphosphorylated and aggregated in atrophic neurons, tau is considered the culprit for neuronal death in familial and sporadic tauopathies. With regards to Alzheimer's disease (AD) pathogenesis, it is not yet established whether entangled tau represents a cause or a consequence of neurodegeneration. In fact, it is unquestionably accepted that amyloid-β protein precursor (AβPP) plays a pivotal role in the genesis of the disease, and it is postulated that the formation of toxic amyloid-β peptides from AβPP is the primary event that subsequently induces abnormal tau phosphorylation. In this work, we show that in the brain of AD patients there is an imbalance between the nuclear and the cytoskeletal pools of phospho-tau. We observed that in non-AD subjects, there is a stable pool of phospho-tau which remains strictly confined to neuronal nuclei, while nuclear localization of phospho-tau is significantly underrepresented in neurons of AD patients bearing neurofibrillary tangles. A specific phosphorylation of tau is required during mitosis in vitro and in vivo, likely via a Grb2-ERK1/2 signaling cascade. In differentiated neuronal A1 cells, the overexpression of AβPP modulates tau phosphorylation, altering the ratio between cytoskeletal and nuclear pools, and correlates with cell death. Altogether our data provide evidence that AβPP, in addition to amyloid formation, modulates the phosphorylation of tau and its subcellular compartmentalization, an event that may lead to the formation of neurofibrillary tangles and to neurodegeneration when occurring in postmitotic neurons.

  • Quantitative neuroproteomics: classical and novel tools for studying neural differentiation and function.

    Publication Date: 01/03/2011 on Stem cell reviews
    by Colucci-D'Amato L, Farina A, Vissers JP, Chambery A
    DOI: 10.1007/s12015-010-9136-3

    Mechanisms underlying neural stem cell proliferation, differentiation and maturation play a critical role in the formation and wiring of neuronal connections. This process involves the activation of multiple serial events, which guide the undifferentiated cells to different lineages via distinctive developmental programs, forming neuronal circuits and thus shaping the adult nervous system. Furthermore, alterations within these strictly regulated pathways can lead to severe neurological and psychiatric diseases. In this framework, the investigation of the high dynamic protein expression changes and other factors affecting protein functions, for example post-translational modifications, the alterations of protein interaction networks, is of pivotal importance for the understanding of the molecular mechanisms responsible for cell differentiation. More recently, proteomic studies in neuroscience ("neuroproteomics") are receiving increased interest for the primary understanding of the regulatory networks underlying neuronal differentiation processes. Besides the classical two-dimensional-based proteomic strategies, the emerging platforms for LC-MS shotgun proteomic analysis hold great promise in unraveling the molecular basis of neural stem cell differentiation. In this review, recent advancements in label-free LC-MS quantitative neuroproteomics are highlighted as a new tool for the study of neural differentiation and functions, in comparison to mass spectrometry-based labeling approaches. The more commonly used protein profiling strategies and model systems for the analysis of neural differentiation are also discussed, along with the challenging proteomic approaches aimed to analyze the nervous system-specific organelles, the neural cells secretome and the specific protein interaction networks.

  • Krüppel-like factor 7 is required for olfactory bulb dopaminergic neuron development.

    Publication Date: 15/02/2011 on Experimental cell research
    by Caiazzo M, Colucci-D'Amato L, Volpicelli F, Speranza L, Petrone C, Pastore L, Stifani S, Ramirez F, Bellenchi GC, di Porzio U
    DOI: 10.1016/j.yexcr.2010.11.006

    Krüppel-like factor 7 (KLF7) belongs to the large family of KLF transcription factors, which comprises at least 17 members. Within this family, KLF7 is unique since its expression is strictly restricted within the nervous system during development. We have previously shown that KLF7 is required for neuronal morphogenesis and axon guidance in selected regions of the nervous system, including hippocampus, olfactory bulbs and cortex, as well as in neuronal cell cultures. In the present work, we have furthered our analysis of the role of KLF7 in central nervous system development. By gene expression analysis during brain embryogenesis, we found significant alterations in dopaminergic neurons in Klf7 null mice. In particular, the tyrosine hydroxylase (TH) and dopamine transporter (Dat) transcripts are strongly decreased in the olfactory bulbs and ventral midbrain at birth, compared to wild-type littermates. Interestingly, Klf7-mutant mice show a dramatic reduction of TH-positive neurons in the olfactory bulbs, but no change in GABAergic or midbrain dopaminergic neurons. These observations raise the possibility that a lack of a KLF family member affects dopaminergic neuron development.

  • Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages.

    Publication Date: 15/08/2010 on Experimental cell research
    by Caiazzo M, Colucci-D'Amato L, Esposito MT, Parisi S, Stifani S, Ramirez F, di Porzio U
    DOI: 10.1016/j.yexcr.2010.05.021

    Previous gene targeting studies in mice have implicated the nuclear protein Krüppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.