Distinct Wiring Mode Found in Chandelier Cells
11/06/2017
Researchers at the Max Planck Florida Institute for Neuroscience identify the wiring process of a unique type of inhibitory cells implicated in several diseases.
A basic tenet of neural development is that young neurons make far more connections than they will actually use, with very little specificity. They selectively maintain only the ones that they end up needing. Once many of these connections are made, the brain employs a use-it or lose-it strategy; if the organism’s subsequent experiences stimulate the synapse, it will strengthen and survive. If not, the synapse will weaken and eventually disappear.
Researchers from Hiroki Taniguchi’s lab at the Max Planck Florida Institute for Neuroscience (MPFI) published a study in eNeuro in May 2017 showing for the first time that a unique type of inhibitory interneuron called chandelier cells – which are implicated in several diseases affecting the brain such as schizophrenia and epilepsy – seem to develop their connections differently than other types of neurons.
Read more on NeuroScience News