Changes in Blood-Brain Barrier and Intestinal Permeability Found in People With Autism

23/01/2017

Autism spectrum disorder (ASD) has the dubious distinction of being the fastest-growing developmental disability in the U.S., according to the Centers for Disease Control and Prevention. With 1 in every 68 children born in this country diagnosed with ASD, parents are looking everywhere for answers about best treatments. Along with selective medication to treat certain symptoms, traditional treatments include intensive behavioral approaches. But with no “one-size-fits-all” treatment approach, parents often turn to diverse complementary and alternative therapies.

Just as parents are looking for answers, scientists are trying to tease out the causes of this multifactorial and complex condition. “Although we are fairly certain that there is a genetic component, there are many pathways for an individual to arrive at autism’s final destination,” says Alessio Fasano, MD, director of the Center for Celiac Research and Treatment at Massachusetts General Hospital (MGH) and co-senior author of a study published in the journal Molecular Autism. “What might dispose one person to develop ASD – either pre- or post-natally – might have no such effect on another person,” he adds.

Looking at the interconnectivity of the gut-brain axis – the biochemical signaling between the gastrointestinal and central nervous systems – researchers led by Maria Rosaria Fiorentino, PhD, of the Mucosal Immunology and Biology Research Center at Massachusset's General Hospital for Children (MGHfC), have opened up a new avenue of research into the pathophysiology of ASD and other neurodevelopmental disorders. “As far as we know, this is the first study to look at the molecular signature of blood-brain barrier dysfunction in ASD and schizophrenia in samples from human patients,” says Fiorentino. In collaboration with researchers from the University of Maryland School of Medicine and others, Fiorentino’s group found an altered blood-brain barrier in tissue samples from people with ASD when compared with healthy controls.

Read more on neurosciencenews.com