Latest PUBLICATIONS

  • The FCP1 phosphatase interacts with RNA polymerase II and with MEP50 a component of the methylosome complex involved in the assembly of snRNP.

    Publication Date: 01/02/2003, on Nucleic acids research
    by Licciardo P, Amente S, Ruggiero L, Monti M, Pucci P, Lania L, Majello B
    DOI:

    RNA polymerase II transcription is associated with cyclic phosphorylation of the C-terminal domain (CTD) of the large subunit of RNA polymerase II. To date, FCP1 is the only specific CTD phosphatase, which is required for general transcription and cell viability. To identify FCP1-associated proteins, we constructed a human cell line expressing epitope-tagged FCP1. In addition to RAP74, a previously identified FCP1 interacting factor, we determined that FCP1-affinity purified extracts contain RNAPII that has either a hyper- or a hypo-phosphorylated CTD. In addition, by mass spectrometry of affinity purified FCP1-associated factors, we identified a novel FCP1-interacting protein, named MEP50, a recently described component of the methylosome complex that binds to the snRNP's Sm proteins. We found that FCP1 specifically interacts with components of the spliceosomal U small nuclear ribonucleoproteins. These results suggest a putative role of FCP1 CTD-phosphatase in linking the transcription elongation with the splicing process.

  • Modulation by flavonoids of PAF and related phospholipids in endothelial cells during oxidative stress.

    Publication Date: 01/02/2003, on Journal of lipid research
    by Balestrieri ML, Castaldo D, Balestrieri C, Quagliuolo L, Giovane A, Servillo L
    DOI: 10.1194/jlr.M200292-JLR200

    PAF-dependent transacetylase (TA) modifies the functions of platelet-activating factor (PAF), a potent inflammatory lipid, either by transferring the acetyl group from PAF to lysophospholipids (TAL activity), or to sphingosine (TAS activity) or by hydrolyzing PAF (acetylhydrolase activity). In stimulated endothelial cells (EC), TAL activity contributes to the synthesis of acyl-PAF, an acyl analog of PAF, that antagonizes PAF functions and is regulated by the cellular redox state. In this study, we investigated the possible involvement of TA in the flavonoid antioxidant mechanism(s) during oxidative stress in EC induced by hydrogen peroxide. The treatment of EC with H2O2 resulted in 4-fold increase of the acetyl-CoA acetyltransferase activity (AT), that is responsible for PAF biosynthesis, while the TAL activity increased only by 53%. However, the preincubation of H2O2-treated EC with the flavonoids hesperedin, naringin, and quercetin strongly inhibited AT activity and activated TAL by 290%, 340%, and 250%, respectively. The induction of TAL activity resulted in enhanced biosynthesis of 1-acyl-2-[3H]acetyl-PAF in intact EC and was related to the flavonoid structure. These findings suggest that TAL is involved in the flavonoid anti-inflammatory action by enhancing the production of acyl-PAF.

  • Hexafluoroisopropanol and acid destabilized forms of apomyoglobin exhibit structural differences.

    Publication Date: 21/01/2003, on Biochemistry
    by Sirangelo I, Dal Piaz F, Malmo C, Casillo M, Birolo L, Pucci P, Marino G, Irace G
    DOI: 10.1021/bi020447f

    The conformational properties of partially folded states of apomyoglobin have been investigated using an integrated approach based on fluorescence spectroscopy and hydrogen/deuterium exchange followed by mass spectrometry. The examined states were those obtained: (i) by adding 4% v/v hexafluoroisopropanol to native myoglobin, HFIP-MG(N); (ii) by adding 4% v/v hexafluoroisopropanol to acid unfolded myoglobin, HFIP-MG(U); (iii) at pH 3.8, I-1 state; and (iv) at pH 2.0-0.2 M NaCl, A state. Proteolytic digestion of the hydrogen/deuterium exchanged proteins showed that, in I-1 state, the helices C, D, E, and F incorporate more deuterium, whereas in HFIP-MG(N) the exchange rate is similar for all protein regions. These results suggest that I-1 contains the ABGH domain in a native-like organization, whereas HFIP-MG(N) loses a large number of tertiary interactions, thus acquiring a more flexible structure. The fluorescence data are consistent with the above picture. In fact, the tryptophan/ANS energy transfer is much less efficient for the ANS-HFIP-MG(N) complex than for the other complexes, thus suggesting that the distances between the fluorophores might be increased. Moreover, fluorescence polarization measurements indicated that the rotational motion of HFIP-MG(N) occurs on a longer time scale than the other partially folded states, thus suggesting that the volume of this state could be larger. The overall results indicate that addition of hexafluoroisopropanol to native myoglobin results in the formation of a true molten globule where tertiary interactions are reduced, while the secondary structure and the globular compactness are conserved.

  • A novel zinc finger transcriptional repressor, ZNF224, interacts with the negative regulatory element (AldA-NRE) and inhibits gene expression.

    Publication Date: 16/01/2003, on FEBS letters
    by Medugno L, Costanzo P, Lupo A, Monti M, Florio F, Pucci P, Izzo P
    DOI:

    The interaction between the negative cis-element (AldA-NRE) and p97 repressor nuclear protein is a key step in modulating transcription of the human and mouse aldolase A (AldA) gene during the cell cycle and differentiation. In an attempt to clarify the role of transcriptional repression in regulating gene expression, we purified, from HeLa cells, the nuclear protein that specifically binds to the AldA negative regulatory element (NRE). Matrix-assisted laser desorption ionization-time of flight analysis and examination of protein profiles from the SwissProt database revealed that the previously defined p97 repressor is ZNF224, a zinc finger protein. We demonstrate that ZNF224, a Kruppel-like zinc finger transcription factor, is the repressor protein that specifically binds to the negative cis-element AldA-NRE and affects the AldA-NRE-mediated transcription.

  • Effect of a modified thymine on the structure and stability of [d(TGGGT)]4 quadruplex.

    Publication Date: 15/01/2003, on International journal of biological macromolecules
    by Petraccone L, Erra E, Nasti L, Galeone A, Randazzo A, Mayol L, Barone G, Giancola C
    DOI:

    Telomeric guanine-rich sequence can adopt quadruplex structures that are important for their biological role in chromosomal stabilisation. G quartets are characterised by the cyclic hydrogen bonding of four guanine bases in a coplanar arrangement and their stability is ion-dependent. In this work we compare the stability of [d(TGGGT)](4) and [d(T*GGGT)](4) quadruplexes. The last one contains a modified thymine, where the hydroxyl group substitutes one hydrogen atom of the methyl group of the thymine in the [d(TGGGT)](4) sequence. We used a combination of spectroscopic, calorimetric and computational techniques to characterise the G-quadruplex formation. NMR and CD spectra of [d(T*GGGT)](4) were characteristic of parallel-stranded, tetramolecular quadruplex. CD and DSC melting experiments reveal that [d(T*GGGT)](4) is less stable that unmodified quadruplex. Molecular models suggest possible explanation for the observed behaviour.

  • On the different mechanisms of spatial transpositions: a case of representational allochiria in clock drawing.

    Publication Date: 01/01/2003, on Neuropsychologia
    by Lepore M, Conson M, Grossi D, Trojano L
    DOI:

    In the present paper, we describe a neglect patient who showed allochiria in copying and drawing a clock from memory. To verify the mechanisms of allochiria in our patient, we designed an experimental investigation including two conditions: to write single hours and to copy their spatial locations, one at a time onto blank circles. The patient showed spatial transpositions in writing hours on blank dials, but did not show allochiria in the reproduction of spatial locations. These findings suggest that the patient could not represent in her mind appropriate spatial coordinates of each hour with respect to the whole clock face. These data are in contrast with findings reported in other patients and demonstrate that constructional allochiria associated with spatial neglect may derive from different causal mechanisms. Our experimental investigation has thus paved the way for a distinction between an "attentional" and a "representational" allochiria.

  • Viral RNA in nerve tissues of patients with hepatitis C infection and peripheral neuropathy.

    Publication Date: 01/01/2003, on Muscle & nerve
    by De Martino L, Sampaolo S, Tucci C, Ambrosone L, Budillon A, Migliaresi S, Di Iorio G
    DOI: 10.1002/mus.10260

    To assess the presence of viral ribonucleic acid (RNA) in nerve tissues of 15 patients with hepatitis C virus (HCV) infection and peripheral neuropathy with (11) or without (4) mixed cryoglobulinemia, nested reverse transcription-polymerase chain reaction (RT-PCR) was performed. Amplification of HCV-RNA was successful in 7 patients with and 3 without mixed cryoglobulinemia. This study demonstrates that the nested RT-PCR technique is a sensitive method to detect viral RNA in nerve tissue, and offers further evidence that in patients with HCV infection peripheral neuropathy can occur in the absence of mixed cryoglobulinemia.

  • Structural studies on Hgr3 orphan receptor ligand prolactin-releasing peptide.

    Publication Date: 05/12/2002, on Journal of medicinal chemistry
    by D'Ursi AM, Albrizio S, Di Fenza A, Crescenzi O, Carotenuto A, Picone D, Novellino E, Rovero P
    DOI:

    Prolactin-releasing peptides (PrRPs) are two novel bioactive peptides of 20 and 31 residues, dubbed respectively PrRP20 and PrRP31, isolated from bovine hypothalamic tissues as ligands of the orphan seven-transmembrane domain receptor Hgr3. The first biological activity identified for these peptides was the release of prolactin. Recent data on biological activities of PrRPs as well as on the localization of their receptors in numerous central nervous system sites suggested new potential actions of PrRPs in the regulation of the central nervous system and the possibility of identifying an alternative central role for these peptides. We describe here the synthesis and the structural characterization of the peptide PrRP20 by CD and NMR spectroscopies. A 3D model was built on the basis of the NMR data collected in a water/sodium dodecyl sulfate mixture. This system provides an amphipatic medium able to mimic the cell membrane. The main structural feature of the PrRP20 is an alpha-helical secondary structure spanning the 10 C-terminal residues. The conformational properties of PrRP20 are discussed in considering the sequence similarity observed between the Hgr3 and the neuropeptide Y (NPY) receptors. This similarity, together with the data showing a number of biological activities common to PrRP and NPY peptides, leads us to formulate the hypothesis that similar structural elements could exist in the ligands as well. In fact, PrRP20 and NPY are well aligned in the C-terminal portion, where they share an amphipatic alpha-helical secondary structure. Interestingly, the homology between the two sequences involves residues crucial for NPY biological activity. The conformational characterization of PrRP20 and the comparison with NPY are a valuable starting point for the rational design of subsequent SAR studies aimed at identifying PrRP analogues acting as either agonists or antagonists at the Hgr3 receptor. Such PrRP analogues could be useful receptorial tools able to clarify the multiple biological functions hypothesized for the PrRP receptor in the central nervous system.

  • Expression and purification of the recombinant subunits of toluene/o-xylene monooxygenase and reconstitution of the active complex.

    Publication Date: 01/11/2002, on European journal of biochemistry
    by Cafaro V, Scognamiglio R, Viggiani A, Izzo V, Passaro I, Notomista E, Piaz FD, Amoresano A, Casbarra A, Pucci P, Di Donato A
    DOI:

    This paper describes the cloning of the genes coding for each component of the complex of toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1, their expression, purification and characterization. Moreover, the reconstitution of the active complex from the recombinant subunits has been obtained, and the functional role of each component in the electron transfer from the electron donor to molecular oxygen has been determined. The coexpression of subunits B, E and A leads to the formation of a subcomplex, named H, with a quaternary structure (BEA)2, endowed with hydroxylase activity. Tomo F component is an NADH oxidoreductase. The purified enzyme contains about 1 mol of FAD, 2 mol of iron, and 2 mol of acid labile sulfide per mol of protein, as expected for the presence of one [2Fe-2S] cluster, and exhibits a typical flavodoxin absorption spectrum. Interestingly, the sequence of the protein does not correspond to that previously predicted on the basis of DNA sequence. We have shown that this depends on minor errors in the gene sequence that we have corrected. C component is a Rieske-type ferredoxin, whose iron and acid labile sulfide content is in agreement with the presence of one [2Fe-2S] cluster. The cluster is very sensitive to oxygen damage. Mixtures of the subcomplex H and of the subunits F, C and D are able to oxidize p-cresol into 4-methylcathecol, thus demonstrating the full functionality of the recombinant subunits as purified. Finally, experimental evidence is reported which strongly support a model for the electron transfer. Subunit F is the first member of an electron transport chain which transfers electrons from NADH to C, which tunnels them to H subcomplex, and eventually to molecular oxygen.

  • PrPC is sorted to the basolateral membrane of epithelial cells independently of its association with rafts.

    Publication Date: 01/11/2002, on Traffic (Copenhagen, Denmark)
    by Sarnataro D, Paladino S, Campana V, Grassi J, Nitsch L, Zurzolo C
    DOI:

    PrP(C) is a glycosylphosphatidylinositol-anchored protein expressed in neurons as well as in the cells of several peripheral tissues. Although the normal function of PrP(C) remains unknown, a conformational isoform called PrP(Sc) (scrapie) has been proposed to be the infectious agent of transmissible spongiform encephalopathies in animals and humans. Where and how the PrP(C) to PrP(Sc) conversion occurs in the cells is not yet known. Therefore, dissecting the intracellular trafficking of the wild-type prion protein, as well as of the scrapie isoform, can be of major relevance to the pathogenesis of the diseases. In this report we have analyzed the exocytic pathway of transfected mouse PrP(C) in thyroid and kidney polarized epithelial cells. In contrast to the majority of glycosylphosphatidylinositol-anchored proteins, we found that PrP(C) is localized mainly on the basolateral domain of the plasma membrane of both cell lines. This is reminiscent of the predominant somatodendritic localization found in neurons. However, similarly to apical glycosylphosphatidylinositol-proteins, PrP(C) associates with detergent-resistant microdomains, which have been suggested to have a role in apical sorting of glycosylphosphatidylinositol-proteins, as well as in the conversion process of PrP(C) to PrP(Sc). In order to discriminate whether detergent-resistant microdomains have a direct role in PrP(Sc) conversion, or whether they are involved in the transport of the protein to the site of its conversion, we have examined the effect of disruption of detergent-resistant microdomain association on PrP(C) intracellular traffic. Consistent with the unusual basolateral localization of this glycosylphosphatidylinositol-linked protein, our data exclude a classical role for detergent-resistant microdomains in the post-trans-Golgi network sorting and transport of PrP(C) to the plasma membrane.

  • Solution structure of the Alzheimer amyloid beta-peptide (1-42) in an apolar microenvironment. Similarity with a virus fusion domain.

    Publication Date: 01/11/2002, on European journal of biochemistry
    by Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D'Ursi AM, Temussi PA, Picone D
    DOI:

    The major components of neuritic plaques found in Alzheimer disease (AD) are peptides known as amyloid beta-peptides (Abeta), which derive from the proteolitic cleavage of the amyloid precursor proteins. In vitro Abeta may undergo a conformational transition from a soluble form to aggregated, fibrillary beta-sheet structures, which seem to be neurotoxic. Alternatively, it has been suggested that an alpha-helical form can be involved in a process of membrane poration, which would then trigger cellular death. Conformational studies on these peptides in aqueous solution are complicated by their tendency to aggregate, and only recently NMR structures of Abeta-(1-40) and Abeta-(1-42) have been determined in aqueous trifluoroethanol or in SDS micelles. All these studies hint to the presence of two helical regions, connected through a flexible kink, but it proved difficult to determine the length and position of the helical stretches with accuracy and, most of all, to ascertain whether the kink region has a preferred conformation. In the search for a medium which could allow a more accurate structure determination, we performed an exhaustive solvent scan that showed a high propensity of Abeta-(1-42) to adopt helical conformations in aqueous solutions of fluorinated alcohols. The 3D NMR structure of Abeta-(1-42) shows two helical regions encompassing residues 8-25 and 28-38, connected by a regular type I beta-turn. The surprising similarity of this structure, as well as the sequence of the C-terminal moiety, with those of the fusion domain of influenza hemagglutinin suggests a direct mechanism of neurotoxicity.

  • Binding and relaxometric properties of heme complexes with cyanogen bromide fragments of human serum albumin.

    Publication Date: 01/10/2002, on Biophysical journal
    by Monzani E, Curto M, Galliano M, Minchiotti L, Aime S, Baroni S, Fasano M, Amoresano A, Salzano AM, Pucci P, Casella L
    DOI: 10.1016/S0006-3495(02)73985-4

    The spectroscopic and reactivity properties of hemin complexes formed with cyanogen bromide fragments B (residues 1-123), C (124-298), A (299-585), and D (1-298) of human serum albumin (HSA) have been investigated. The complex hemin-D exhibits binding, spectral, circular dichroism, and reactivity characteristics very similar to those of hemin-HSA, indicating that fragment D contains the entire HSA domain involved in heme binding. The characteristics of the other hemin complexes are different, and a detailed investigation of the properties of hemin-C has been carried out because this fragment contains the HSA binding region of several important drugs. Hemin-C contains a low-spin Fe(III) center, with two imidazole ligands, but the complex undergoes a reversible structural transition at basic pH leading to a high-spin, five-coordinated Fe(III) species. This change determines a marked increase in the relaxation rate of water protons. Limited proteolysis experiments and mass spectral analysis carried out on fragment C and hemin-C show that the region encompassing residues Glu-208 to Trp-214 is protected from activity of proteases in the complex and, therefore, is involved in the interaction with hemin. A structural model of fragment C enables us to propose that His-242 and His-288 are the axial ligands for the Fe(III) center.

  • Topological investigation of amyloid fibrils obtained from beta2-microglobulin.

    Publication Date: 01/10/2002, on Protein science : a publication of the Protein Society
    by Monti M, Principe S, Giorgetti S, Mangione P, Merlini G, Clark A, Bellotti V, Amoresano A, Pucci P
    DOI: 10.1110/ps.0206902

    Amyloid fibrils of patients treated with regular hemodialysis essentially consists of beta2-microglobulin (beta2-m) and its truncated species DeltaN6beta2-m lacking six residues at the amino terminus. The truncated fragment has a more flexible three-dimensional structure and constitutes an excellent candidate for the analysis of a protein in the amyloidogenic conformation. The surface topology of synthetic fibrils obtained from intact beta2-m and truncated DeltaN6beta2-m was investigated by the limited proteolysis/mass spectrometry approach that appeared particularly suited to gain insights into the structure of beta2-m within the fibrillar polymer. The distribution of prefential proteolytic sites observed in both fibrils revealed that the central region of the protein, which had been easily cleaved in the full-length globular beta2-m, was fully protected in the fibrillar form. In addition, the amino- and carboxy-terminal regions of beta2-m became exposed to the solvent in the fibrils, whereas they were masked completely in the native protein. These data indicate that beta2-m molecules in the fibrils consist of an unaccessible core comprising residues 20-87 with the strands I and VIII being not constrained in the fibrillar polymer and exposed to the proteases. Moreover, proteolytic cleavages observed in vitro at Lys 6 and Lys 19 reproduce specific cleavages that have to occur in vivo to generate the truncated forms of beta2-m occurring in natural fibrils. On the basis of these data, a possible mechanism for fibril formation from native beta2-m is discussed and an explanation for the occurrence of truncated protein species in natural fibrils is given.

  • A novel mutation in the CLN1 gene in a patient with juvenile neuronal ceroid lipofuscinosis.

    Publication Date: 01/10/2002, on Journal of neurology
    by Mazzei R, Conforti FL, Magariello A, Bravaccio C, Militerni R, Gabriele AL, Sampaolo S, Patitucci A, Di Iorio G, Muglia M, Quattrone A
    DOI: 10.1007/s00415-002-0849-3

    We describe the clinical, neuropathological and molecular findings from a patient affected with neuronal ceroid lipofuscinosis with a juvenile onset (JNCL). She was a 9-year-old right-handed girl with a normal birth and early developmental milestones. At the age of 4 the early symptoms began. Skin biopsy showed granular osmiophilic deposits (GRODs). Because JNCL with GRODs is caused by mutations in the CNL1 gene, we performed a molecular investigation by direct sequencing of nine exons of the CNL1 gene. This analysis revealed a novel mutation in homozygous form in the exon 7 that caused an aminoacid substitution at codon 222 (Leu --> Pro). Direct sequencing of the exon 7 in both parents showed the same substitution in heterozygous form.

  • Abnormal accumulation of tTGase products in muscle and erythrocytes of chorea-acanthocytosis patients.

    Publication Date: 01/10/2002, on Journal of neuropathology and experimental neurology
    by Melone MA, Di Fede G, Peluso G, Lus G, Di Iorio G, Sampaolo S, Capasso A, Gentile V, Cotrufo R
    DOI:

    Chorea-Acanthocytosis (CHAC) is an autosomal recessive disease characterized by neurodegeneration and acanthocytosis. Enhanced creatine kinase concentration is a constant feature of the condition. The mechanism underlying CHAC is unknown. However, acanthocytosis and enhanced creatine kinase suggest a protein defect that deranges the membrane-cytoskeleton interface in erythrocytes and muscle, thereby resulting in neurodegeneration. Acanthocytes have been correlated with structural and functional changes in membrane protein band 3--a ubiquitous anion transporter. Residue Gln-30 of band 3 serves as a membrane substrate for tissue transglutaminase (tTGase), which belongs to a class of intra- and extra-cellular Ca2+-dependent cross-linking enzymes found in most vertebrate tissues. In an attempt to cast light on the pathophysiology of CHAC, we used reverse-phase HPLC and immunohistochemistry to evaluate the role of tTGase in this disorder. We found increased amounts of tTGase-derived N(epsilon)-(-gamma-glutamyl)lysine isopeptide cross-links in erythrocytes and muscle from CHAC patients. Furthermore, immunohistochemistry demonstrated abnormal accumulation of tTGase products as well as proteinaceous bodies in CHAC muscles. These findings could explain the mechanisms underlying the increased blood levels of creatine kinase and acanthocytosis, which are the most consistent features of this neurodegenerative disease.